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Estimation of onditional distribution funtion

under dependent random ensored data

A. A. Abdushukurov

1

1
Branh of Mosow State University in Tashkent, Uzbekistan,

a_abdushukurov�rambler.ru

The aim of paper is onsidering the problem of estimation of on-

ditional survival funtion in the ase of right random ensoring with

presene of ovariate.

Let's onsider the ase when the support of ovariate C is the interval

[0, 1] and we desribe our results on �xed design points 0 ≤ x1 ≤ x2 ≤
... ≤ xn ≤ 1 at whih we onsider responses (survival or failure times)

X1, ..., Xn and ensoring times Y1, ..., Yn of idential objets, whih are

under study. These responses are independent and nonnegative ran-

dom variables (r.v.-s) with onditional distribution funtion (d.f.) at xi,
Fxi

(t) = P (Xi ≤ t/Ci = xi). They are subjeted to random right en-

soring, that is for Xi there is a ensoring variable Yi with onditional

d.f. Gxi
(t) = P (Yi ≤ t/Ci = xi) and at n-th stage of experiment the ob-

served data is S(n) = {(Zi, δi, Ci), 1 ≤ i ≤ n}, where Zi = min(Xi, Yi),
δi = I(Xi ≤ Yi) with I(A) denoting the indiator of event A.

Note that in sample S(n)
r.v. Xi is observed only when δi = 1.

Commonly, in survival analysis to assume independene between the

r.v.-s Xi and Yi onditional on the ovariate Ci. But, in some pratial

situations, this assumption does not hold. Therefore, in this artile we

onsider a dependene model in whih dependene struture is desribed

through opula funtion. So let Sx(t1, t2) = P (Xx > t1, Yx > t2), t1,
t2 ≥ 0, the joint survival funtion of the response Xx and the ensoring

variable Yx at x. Then the marginal survival funtions are SX
x (t) =

1−Fx(t) = Sx(t, 0) and S
Y
x (t) = 1−Gx(t) = Sx(0, t), t ≤ 0. We suppose

that the marginal d.f.-s Fx and Gx are ontinuous. Then aording to

the Theorem of Slar (see, [1℄), the joint survival funtion Sx(t1, t2) an
be expressed as

Sx(t1, t2) = Cx(S
X
x (t1), S

X
x (t2)) , t1, t2 ≥ 0, (1)

where Cx(u, v) is a known opula funtion depending on x, SX
x and SY

x

in a general way. We onsider estimator of d.f. Fx whih is equivalent

© Abdushukurov A.A., 2018
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to the relative-risk power estimator [2, 3℄ under independent ensoring

ase.

Assume that at the �xed design value x ∈ (0, 1), Cx in (1) is Arhi-

medean opula, i.e.

Sx(t1, t2) = ϕ[−1]
x (ϕx(S

X
x (t1)) + ϕx (S

Y
x (t2))), t1, t2 ≥ 0, (2)

where, for eah x, ϕx : [0, 1] → [0,+∞] is a known ontinuous, onvex,

stritly dereasing funtion with ϕx = 0. We assume that opula gen-

erator funtion ϕx is strit, i.e. ϕx(0) = ∞ and ϕ−1x is a inverse of ϕx.

From (2), it follows that

P (Zx > t) = 1−Hx(t) = Hx(t) = SZ
x (t) = Sx(t, t)

= ϕ−1x (ϕx(S
X
x (t)) + ϕx(S

Y
x (t))), t ≥ 0, (3)

Let H
(1)
x (t) = P (Zx ≤ t, δx = 1) be a subdistribution funtion and Λx(t)

is rude hazard funtion of r.v. Xx subjeting to ensoring by Yx,

Λx(dt) =
P (Xx ∈ dt,Xx ≤ Yx)

P (Xx ≥ t, Yx ≥ t)
=
H

(1)
x (dt)

SZ
x (t−)

. (4)

From (4) one an obtain following expression of survival funtion SX
x :

SX
x (t) = ϕ−1x

[
−
∫ t

0

ϕ′x
(
SZ
x (u)

)
dH(1)

x (u)
]
, t ≥ 0. (5)

In order to onstruting the estimator of SX
x aording to represen-

tation (5), we introdue smoothed estimators of SZ
x , H

(1)
x and regularity

onditions for them. We use the Gasser�M�uller weights

wni(x, hn) =
1

qn(x, hn)

∫ xi

xi−1

1

hn
π

(
x− z

hn

)
dz, i = 1, ..., n, (6)

with

qn(x, hn) =

∫ xn

0

1

hn
π

(
x− z

hn

)
dz,

where x0 = 0, π is a known probability density funtion (kernel) and

{hn, n ≥ 1} is a sequene of positive onstants, tending to zero as n→ ∞,

alled bandwidth sequene.
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Let's introdue the weighted estimators of Hx, S
Z
x and H

(1)
x respe-

tively as

Hxh(t) =
n∑

i=1

wni(x, hn) I(Zi ≤ t), SZ
xh(t) = 1−Hxh(t),

H
(1)
xh (t) =

n∑

i=1

wni(x, hn) I(Zi ≤ t, δi = 1). (7)

Then plugging estimators (6) and (7) in (5), we obtain the following

intermediate estimator of SX
x :

SX
xh(t) = 1− Fxh(t) = ϕ−1x

[
−
∫ t

0

ϕ′x
(
SZ
x (u)

)
dH(1)

x (u)

]
, t ≥ 0.

In this work we propose the next extended analogue of estimator

introdued in [2, 3℄:

ŜX
xh(t) = ϕ−1x

[
ϕ
(
SZ
xh(t)

)
· µxh(t)

]
= 1− F̂xh(t), (8)

where

µxh(t) = ϕ
(
SX
xh(t)

)
/ϕ
(
S̃Z
xh(t)

)
,

ϕ
(
SX
xh(t)

)
= −

∫ t

0

ϕ′x
(
SZ
xh(u)

)
dH

(1)
xh (u),

ϕ
(
S̃Z
xh(t)

)
= −

∫ t

0

ϕ′x
(
SZ
xh(u)

)
dHxh(u).

In order to investigate the estimate (6) we introdue some onditions.

For the design points x1, ..., xn, denote

∆n = min
1≤i≤n

(xi − xi−1), ∆n = max
1≤i≤n

(xi − xi−1).

For the kernel π, let

‖π‖22 =

∫ ∞

−∞

π2(u) du, mν(π) =

∫ ∞

−∞

uν π(u) du, ν = 1, 2.

Moreover, we use next assumptions on the design and on the kernel

funtion:

(A1) As n→ ∞, xn → 1, ∆n = O( 1
n ), ∆n −∆n = o( 1

n ).
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(A2) π is a probability density funtion with ompat support

[−M,M ] for some M > 0, with m1(π) = 0 and |π(u) − π(u′)| ≤
C(π) |u − u′|, where C(π) is some onstant.

Let THx
= inf{t ≥ 0 : Hx(t) = 1}. Then THx

= min(TFx
, TGx

).
For our results we need some smoothnees onditions on funtions Hx(t)

and H
(1)
x (t). We formulate them for a general (sub)distribution funtion

Nx(t), 0 ≤ x ≤ 1, t ∈ R and for a �xed T > 0.

(A3)

∂2

∂x2Nx(t) = N̈x(t) exists and is ontinuous in (x, t) ∈ [0, 1] ×
[0, T ].

(A4)

∂2

∂t2Nx(t) = N ′′x (t) exists and is ontinuous in (x, t) ∈ [0, 1] ×
[0, T ].

(A5)

∂2

∂x ∂tNx(t) = Ṅ
′
x(t) exists and is ontinuous in (x, t) ∈ [0, 1]×

[0, T ].

(A6)

∂ϕx(u)
∂u = ϕ′x(u) and

∂2ϕx(u)
∂u2 = ϕ′′x(u) are Lipshitz in the x-

diretion with a bounded Lipshitz onstant and

∂3ϕx(u)
∂u3 = ϕ′′′x (u) exists

and is ontinuous in (x, u) ∈ [0, 1]× (0, 1].
Under onditions (A1)-(A6) we derive an almost sure representation

result of the di�erene F̂xh(t) − Fx(t) with rate and weak onvergene

results for the proess

{
(nhn)

1/2
[
F̂xh(·) − Fx(·)

]
, 0 ≤ t ≤ T

}
to the

Gaussian proesses.

Referenes

1. R. B.Nelsen, An Introdution to Copulas, Springer, New York, 1999.

2. A.A.Abdushukurov, Nonparametri estimation of distribution funtion

based on relative risk funtion, Commun. Statist.: Theory and Methods

27:8 (1998) 1991�2012.

3. A.A.Abdushukurov, On nonparametri estimation of reliability indies

by ensored samples, Theory Probab. Appl. 43:1 (1999) 3�11.

Stability analysis of retrial queueing systems based

on the synhronization method

L. G. Afanaseva

1

1
Mosow State University, Mosow, Russia, l.g.afanaseva�yandex.ru

We onsider two retrial queueing models M1 and M2 in whih pri-

mary ustomers arrive aording to a regenerative �ow {X(t), t ≥ 0} of
© Afanaseva L.G., 2018
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rate λX (Afanaseva and Bashtova [2℄). Let {θj}∞j=1 be a sequene of re-

generation points for X(t), τj = θj+1−θj is the j-th regeneration period
and ξj = X(θj+1) − X(θj) (j = 0, 1, ..., θ0 = 0). Assume E τ1 < ∞,

E ξ1 <∞ then w.p. 1

λX = lim
t→∞

X(t)

t
=

E ξ1
E τ1

.

There are m idential servers in the systems and servie times form

a sequene {ηn}∞n=1 of independent identially distributed (iid) random

variables with .d.f. B(x) and �nite mean b =
∫∞
0 x dB(x). An arriving

ustomer �nding one or more servers idle obtains servie immediately.

Customers who �nd all servers busy go diretly to the orbit and start

generating requests for servie. For the model M1 we assume that the

�ow of requests for servie from the orbit is a doubly stohasti Poisson

proess (DSPP) (see Grandell [3℄) with a random intensity ν(Z(t)). Here
Z(t) is the number of ustomers on the orbit at time t. If there is an idle
server at time of the request from the orbit then the servie one from

Z(t) ustomers begins.

In the model M2 the repeated requests are realized through iid ran-

dom intervals {ζn}∞n=0 with E ζn = ν−1 independently of the number

of ustomers on the orbit. Thus, the rate of the �ow of the repeated

requests is a onstant that is equal to ν. For the both models M1 and

M2 we onsider a stohasti proess q(t) that is the number of ustomers
in the system at time t. We will all this proess a stable one if there

exists the limit

lim
t→∞

P(q(t) ≤ x) = Φ(x),

where Φ(x) is a d.f. not depending on any initial state of the system.

Condition 1.

P(ξ1 = 0, τ1 > 0) +P(ξ1 = 1, τ1 − t1 > η1) > 0,

where θ1 + t1 � is the arrival time and η1 the servie time of the unique
ustomer on the regeneration period (θ1, θ2).

Note, this ondition provides the hit of the proess q(t) to zero state
from any initial state of the system with positive probability.

Condition 2. For the model M2 the random variable ζn has the

seond exponential phase.

10
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This means that

ζn = ζ(1)n + ζ(2)n ,

where ζ
(1)
n and ζ

(2)
n are independent random variables and

P(ζ(2)n > x) = e−γx, γ > 0.

Under Condition 1 the proess q(t) is a regenerative one for the model
M1 and for the model M2 it is valid under additional Condition 2.

Stability Theorem for the Model M2

Let N(t) be a ounting proess for the sequene {ζn}∞n=0, i.e.

N(t) = max
{
k ≥ 0 :

k∑

j=1

ζj ≤ t
}
.

Consider m-server system with refusals and a regenerative input �ow

U(t) = X(t) + N(t), i.e. Reg|G|m|0. Let n(t) be the number of busy
servers at time t in this system and

lim
k→∞

P(n(tk) = j) = pj , j = 0, 1, . . . ,

where {tk}∞k=1 is the sequene of moments of jumps of the input �ow

U(t). We de�ne the tra� rate for the model M2 as follows:

ρ2 =
λX

(λX + ν)(1− pm)
.

Theorem 1. Let Conditions 1 and 2 be ful�lled. The proess q(t) is
a stable one i� ρ2 < 1.

The proof is based on synhronization of X(t) and auxiliary proess

Ỹ (t) that is the number of served ustomers up to time t in the auxiliary

system M̃2 in whih always there are ustomers on the orbit.

Corollary 1. Let X(t) and N(t) be Poisson proesses with rate λ and
ν respetively. Then q(t) is a stable proess i�

λ

λ+ ν
<

m−1∑
j=0

αj

j!

m∑
j=0

αj

j!

, (1)
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where α = b (λ+ ν).

Stability Theorem for the Model M1

Theorem 2. Let Condition 1 be ful�lled. The intensity of repeated

requests is nondereasing funtion ν(j) and lim
j→∞

ν(j) = ∞. Then q(t) is

a stable proess i�

ρ =
λb

m
< 1.

Now onsider the ase

lim
j→∞

ν(j) = ν <∞. (2)

Corollary 2. Let X(t) be a Poisson proess, ν(j) is non-dereasing
funtion and (2) holds. Then for the model M1 the neessary and su�-

ient ondition is of the form (1).

Conlusion. We onsidered the generalization of the lassial retrial

systems. The pioneering studies of retrial queues present the onept of

"retrial time" as an alternative to the models of telephone systems queues

with refusals (see [2℄ and literature there). It was assumed for retrial

models that eah ustomer on the orbit generates a �ow of repeated

request independently of the rest ustomers in the retrial group. Thus in

the lassial retrial poliy we have for the modelM1 the intensity ν(j) =
νj . The seond lass ontains models with onstant retrial rate. This

onstant retrial poliy was introdued by Fayolle [5℄. Sine Fayolle, there

has been a rapid growth in the literature (see e.g. [4℄, [6℄). Our modelM1

belongs to this lass but we assume that input �ow is a regenerative one

and intervals between repeated requests from the orbit have an arbitrary

distribution.
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Optimal portfolio onstrution with two-sided

weight onstraints and ommission
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Mosow, Russia, malnator�yandex.ru,

2
salnator�yandex.ru

We onsider the problem of �nding the optimal portfolio with two-

sided onstraints for weights and with ommission under ertainty. For

the Markowitz model (portfolios without short positions) a omplete ef-

�ient algorithmi solution of the problem is proposed. A heuristi e�-

ient algorithm for solving this problem for the Blak's model (portfolios

with short positions) is also proposed. Under unertainty the �nanial

analyst usually onsiders the most likely senarios of the possible omple-

tion of the transation. In that ase, the analysis of individual senarios

is arried out under ertainty. The ondition of ertainty means that

the investor knows both the urrent and future pries of assets (based

on prie foreasts) and inome. The investigation of portfolio transa-

tions under ertainty is de�nitely useful and widely used by aountants

and auditors in the analysis of losed transations. It is signi�ant that

unlike the ideal ase without ommission, the task of hoosing the op-

timal portfolio for Blak's model is nonsmooth. Portfolio analysis with

ommission under unertainty was investigated in detail in [1, 2℄.

In what follows, we onsider one-period portfolio transations with

a �xed and �nite investment horizon. In addition, we onsider only the

investment portfolios i.e. portfolios for whih the proeeds from the short

sales do not over the osts of opening the long positions of the portfolio.

For simpliity, assume that the dividends will not be paid separately.

Note that under ertainty the rational investor hooses portfolio with

the highest return.

© Al-Nator M.S., Al-Nator S.V., 2018
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Suppose that we have n assets A1, . . . , An. Let rk denote the prie

return of Ak. The portfolio will be denoted by the vetor of asset weights

x = (x1, . . . , xn):
∑n

k=1 xk = 1 (the budget onstraint). If there are no

ommission osts, it is well known that the portfolio return r(x) is the
weighted average of the individual asset returns r(x) =

∑n
k=1 xk rk.

The investor an not quite arbitrarily hoose these weights for two

reasons. First, the portfolio weights must satisfy the budget onstraint.

Seondly, in many markets there are strit limitations on the size of

short positions. For example, institutional investors suh as insurane

ompanies, pension funds and some redit institutions are obliged to

adhere to legislation requirements for assets weights of di�erent lasses

(suh as government seurities, shares of ompanies, real estate et.).

Speifying the lass of admissible portfolios de�nes a partiular opti-

mization problem. Usually this lass is de�ned by a system of equations

and inequalities.

First we onsider the problem of seleting the optimal portfolio with

two-sided onstraints and no ommission. This problem is not trivial,

but not di�ult to solve in pratial terms (see Remark 3 below). This

problem is formulated as follows.

Problem 1. For given returns r1, r2, . . . , rn and a = (a1, . . . , an),
b = (b1, . . . , bn)

maximize r(x) = r1 x1 + r2 x2 + . . .+ rn xn (1)

subjet to x1 + x2 + . . .+ xn = 1 and (2)

a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , an ≤ xn ≤ bn. (3)

The following theorem ontains the neessary and su�ient ondition

for the solution existene of problem 1. Let A = a1 + a2 + . . .+ an and

B = b1 + b2 + . . .+ bn.

Theorem 1. The problem 1 has a solution if and only if A ≤ 1 ≤ B.
Moreover, when A 6= B an admissible portfolio an be found by the

formula

x = a+

(
1−A

B −A

)
(b− a).

If the portfolio transation is opened with a ommission α and losed

with a ommission β, then aording to [1℄, [2℄ the portfolio return has
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the form

rα,β(x) =
1

1 + α
n∑

k=1

|xk|

(
n∑

k=1

xk rk −
n∑

k=1

(α+ β + β rk) |xk|
)
. (4)

Now onsider the ase when the investor an open only long positions

(the Markowitz model), in other words, the investor forms portfolios

with non-negative weights. In that ase, the optimization problem 1 is

formulated as follows

Problem 2. For given returns r1, r2, . . . , rn and ai ≥ 0, bi ≤ 1, i =
1, 2, . . . , n

maximize rα,β(x) = aα,β r(x) − bα,β

subjet to (2) and (3), where aα,β = 1−β
1+α , bα,β = α+β

1+α .

Reall that the linear funtion (note that the portfolio return is a

linear funtion of the portfolio weights) has the largest value on the

boundary of the funtion domain. Sine there is one equality onstraint

and 2n inequality onstraints, then, at least, n − 1 omponents of the

optimal portfolio must satisfy the boundary onditions. The solution of

Problem 2 (under the onditions of Theorem 1) may be found e�iently

by the following general algorithm (the Swap Algorithm). Suppose that

for an admissible portfolio x there exists a pair of omponents xi and
xj , that do not satisfy the boundary equalities, let for example xi < bi
and aj < xj . Assume also that rj < ri. Then the swap (or exhange)

of the assets Ai and Aj is possible. This swap allows to inrease the

portfolio return. The main idea of the swap is to sell an amount (not

neessary integer) of the asset Aj (i.e., we derease the weight xj by a

ertain amount h > 0) and to buy Ai on the amount of revenue from the

sale of Aj (i.e., we inrease the weight xi by the same amount h > 0).
It is easy to see that the swap preserves the budget onstraint. Note

that the swap will preserve the boundary onditions, if h satis�es the

inequalities aj ≤ xj − h and xi + h ≤ bi or, equivalently h ≤ xj − aj
and h ≤ bi − xi. The swap inreases the portfolio return by the value

∆rij = h aα,β (ri − rj) > 0. At the same time the extremal swap with

h = min{xj−aj, bi−xi} gives the greatest growth of the portfolio return.
Remark 1. If all assets have the same return: r1 = r2 = · · · = rn =

r0 then for the Markowitz model all portfolios have the same return

rα,β(x) = aα,β r0 − bα,β. In that ase, the investor is indi�erent to
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the hoie of a partiular portfolio, provided that the reeived return is

positive and satisfatory for the investor.

Remark 2. Let ri = max
k=1,...,n

{rk} and bi = 1. Then the Problem 2

admits a trivial solution. Namely, the investor invests all the money in

the asset Ai with the highest return, provided that the reeived return

is positive and satisfatory for the investor.

Let us onsider the ase when the investor an open short positions

(the Blak's model). Then the optimization problem 1 is formulated as

follows

Problem 3. For given returns r1, r2, . . . , rn and a = (a1, . . . , an),
b = (b1, . . . , bn) maximize rα,β (see (4)) subjet to (2) and (3).

Under the onditions of Theorem 1, the Problem 3 always has a

solution, sine one seeks the maximum of a ontinuous funtion on a

ompat set. Note that the return of the optimal portfolio should be

positive and satisfatory for the investor.

To solve this problem, we propose the following heuristi algorithm.

Renumber the assets so that their returns are loated in noninreasing

order: r1 ≥ r2 ≥ . . . ≥ rn. Apparently, in a typial situation the optimal
portfolio x∗ = (x∗1, x

∗
2, . . . , x

∗
n) has the following property: there is a

k suh that x∗1, x
∗
2, . . . , x

∗
k ≥ 0 and x∗k+1, . . . , x

∗
n ≤ 0. This allows

to redue the solution of the Problem 3 to the solution of n smooth

problems. Namely, for eah k = 1, 2, . . . , n we solve the Problem 3

under the onditions that x1, x2, . . . , xk ≥ 0 and xk+1, xk+2, . . . ,

xn ≤ 0 and then we hoose the solution with the highest return from the

resulting n solutions.

Remark 3. If α = β = 0 then the Swap Algorithm is appliable

to Blak's model. Moreover, for the Markowitz model, the solution of

Problem 2 oinides with the solution of a similar problem without om-

mission.
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The goal of any �nanial transation in the seurities market is to

ahieve maximum inome and to inrease the initial apital. Optimal

portfolio seletion problem is one of the basi researh �elds in modern

�nanial eonomis espeially in the theory of portfolio analysis. In

multi-period portfolio transations with transation osts the problem

of portfolio seletion beomes nontrivial and more hard to solve. In this

work for the Markowitz model (only long positions are allowed for this

model, see [1, 2℄) we solve the problem of hoosing the optimal multi-

period self-�naning portfolio strategy with ommission under ertainty

(we give a omplete proof for this solution). In other words, we are

looking for a strategy for whih all the released money from the sale of

some assets will be invested in the aquisition of other assets in order to

maximize the portfolio value at the end of the investment horizon.

We emphasize that the solution of this problem is nontrivial and

may di�er from its solution without ommission. One-period portfolio

analysis with ommission under unertainty was investigated in detail

in [3, 4℄.

Let the market onsist of n assets A1, A2, . . . , An. The portfolio at

time t will be denoted by the position vetor z(t) = (z1(t), z2(t), . . . ,
zn(t)), where zk(t) ≥ 0 is the position of Ak (note that zk(t) is the

amount of Ak in the portfolio at the time t). Let pk(t) be the asset prie
of Ak at time t. Then the market state at any time t is spei�ed by the

n-dimensional prie vetor p(t) = (p1(t), p2(t), . . . , pn(t)).
In what follows, we onsider multi-period portfolio transations with

�xed and �nite investment horizon. We assume that hanges in asset

pries our only at disrete instants of time.

By strategy we mean a sequential restruturing of the portfolio

(formed at the time t0 = 0 with an initial apital) at the moments

t = t0, t1, . . . , tN , in order to maximize the portfolio value at the time

tN . We denote the strategy by

Z[t0,tN ] = {z(t0), z(t1), . . . , z(tN−1)}. (1)

© Al-Nator M.S., Al-Nator S.V., Kasimov Yu.F., 2018
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The strategy Z[t0,tN ] is alled admissible if all the released money from

the sale of some assets is invested in the aquisition of other assets.

The optimization problem with ommission α is formulated as fol-

lows:

For the investment horizon [t0, tN ] and the prie foreast [pk(ti)]
i=0,N
k=1,n

�nd a strategy

Z∗[t0,tN ] = {z∗(t0), z∗(t1), . . . , z∗(tN−1)} (2)

that satis�es at any time ti, i = 1, . . . , N the balane equation

n∑

k=1

zk(ti−1) pk(ti) =

n∑

k=1

zk(ti) pk(ti)+α

n∑

k=1

|zk(ti)−zk(ti−1)|pk(ti) (3)

suh that

〈z∗(tN−1),p(tN )〉 = max
Z[t0,tN ]

〈z(tN−1),p(tN )〉, (4)

where 〈 , 〉 is the standard salar produt in Rn
.

We need the following notation to desribe the optimal strategy on-

strution sheme:

ck(ti, ti+1) =
pk(ti+1)

pk(ti)
, k = 1, n, i = 0, N − 1,

cmax(ti, ti+1) = max
1≤k≤n

ck(ti, ti+1), k = 1, n, i = 0, N − 1,

S(ti) =

n∑

k=1

zk(ti)pk(ti), i = 0, N,

λk(ti) =
Sk(tN )

Sk(ti)
, k = 1, n, i = 0, N,

ωk(ti, ti+1) = λk(ti+1)ck(ti, ti+1), k = 1, n, i = 0, N − 1,

ωmax(ti, ti+1) = max
1≤k≤n

ωk(ti, ti+1), i = 0, N − 1,

ρk(ti, ti+) = aαωmax(ti, ti+1)− ωk(ti, ti+1), k = 1, n, i = 0, N − 1,

where aα = (1− α)(1 + α).
The optimal strategy is onstruted in the diretion from the end of

the investment horizon to its beginning:

1. For eah ti, selet the asset Am with ωm(ti, ti+1) = ωmax(ti, ti+1).
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2. For eah k = 1, n alulate ρk(ti, ti+1).
2.1. If ρk(ti, ti+1) ≤ 0 then the position zk(ti−1) of Ak is not hanged

under the transition z(ti−1) → z(ti). In that ase set

λk(ti) = ωk(ti, ti+1) = ck(ti, ti+1)λk(ti+1).

2.2. If ρk(ti, ti+1) > 0 then sell all units of the asset Ak and invest

the money from its sale in the asset Am. In that ase set

λk(ti) = aα ωmax(ti, ti+1).
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Let n, N be integer numbers. The term homogeneous alloation

sheme of n distinguishable partiles by N di�erent ells will be used for

the random variables η1, . . . , ηN with the joint distribution

P{η1 = k1, . . . , ηN = kN} =
n!

k1! k2! · · · kN !

( 1

N

)n
,

where k1, k2, . . . , kN are nonnegative integer numbers suh that k1 +
k2 + . . .+ kN = n. Denote α = n

N .

© Alhuzani M., Chuprunov A., 2018
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Let K be an integer number suh that 0 < K ≤ N . Let r be a

nonnegative integer number. We will onsider the random variable

µr(n,K,N) =

K∑

i=1

I{ηi=r}.

Observe that µr(n,K,N) is a number of ells from the �rstK ells whih

ontain r partiles.

Theorem 1. Let 2 ≤ r and N , K, n → ∞ so that K pr → λ, where
0 < λ <∞ and

K
N < C, 0 < C < 1. We will suppose that

e α− r < C1, where C1 <∞, and

α

N
→ 0.

Then we have

P{µr(n,K,N) = k} = e−λ
λk

k!

(
1 + o(1)

)
, k = 0, 1, . . .

Consider the random variable

η(K,N) = max
1≤i≤K

ηi.

Observe that η(K,N) is a maximal value of a ell from the �rst K ells.

Theorem 2. Let r ≥ 3. Suppose that N , K, n→ ∞ so that

α

r
→ 0,

α

N
→ 0, K pr+1 → λ,

K

N
< C,

where C < 1 and 0 < λ <∞. Then we have

P{η(K,N) = r} = e−λ + o(1), P{η(K,N) = r + 1} = 1− e−λ + o(1).

Consider the random variable

η(K,1) = min
1≤i≤K

ηi.

Observe that η(K,1) is a minimal value of a ell from the �rst K ells.

Theorem 3. Suppose r ≥ 3, N , K, n→ ∞ so that

α

r
→ ∞,

α

N
→ 0, K pr−1 → λ,

K

N
< C,
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where 0 < λ <∞, 0 < C < 1. Then we have

P{η(K,1) = r − 1} = 1− e−λ + o(1), P{η(K,1) = r} = e−λ + o(1).

Remark 1. Limit theorems for µr(n,K,N), η(K,N), η(K,1) for the

ase K = N were obtained in many paper (see [1℄ and the bibliography

therein). In [2℄ limit theorems were obtained for µ0(n,K,N).
Remark 2. Let A ⊂ {1, 2, . . . , N}, |A| = K. Denote

µr(n,A,N) =
∑

i∈A

I{ηi=r}, η(A,N) = max
i∈A

ηi, η(A,1) = min
i∈A

ηi.

The distributions of µr(n,A,N), η(A,N) and η(A,1) oinide with the

distributions of µr(n,K,N), η(K,N) and η(K,1), orrespondingly. So

Theorem 1, Theorem 2, Theorem 3 an be onsidered as theorems for

µr(n,A,N), η(A,N) and η(A,1).
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The operation of various queueing systems is of inreasing interest

when the intensity of the inoming �ow is high. Therefore, a lot of pa-

pers is devoted to the onsideration of ertain systems in onditions of

inreasing intensity of the inoming �ow. In the report, we onsider an

in�nite-hannel system with heavy tails of servie times. The property

of gravity of tails leads to the fat that, unlike systems with light tails

© Bashtova E.E., Popov A.B., 2018
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of maintenane times, two di�erent situations are possible. Namely, de-

pending on whether the intensity grows slowly or rapidly in omparison

with the rate of derease of the tails of servie times, onvergene to a

stable law turns out, or, under a di�erent normalizing fator, to a normal

law. The report is a generalization of some results of paper of Mikosh

et. [1℄, in whih for a system with a Poisson input �ow with onstant

intensity the onvergene of �nite-dimensional distributions is proved.

Consider a Poisson �ow on R with periodi and integrable over the

period intensity λ(t). Let τ denotes the period of λ(t) and (Γk,−∞ <
k < ∞) be points of this Poisson �ow (suh that Γ0 < 0 < Γ1). It is

assumed additionally that for any t ∈ R

0 < λ∗ ≤ λ(t) ≤ λ∗ <∞.

Denote

Λ(t) =

t∫

0

λ(y)dy, λ = lim
t→∞

Λ(t)

t
=

Λ(τ)

τ
.

We onsider a queueing system with in�nite number of servers. At

every moment Γk a laim enters the system and then it is serving during

the time interval Xk. We assume X,X1, X2, ... to be independent and

independent of input �ow, identially distributed random variables and

P (X > x) = F (x) = x−αL(x), x > 0, 1 < α < 2,

where L(x) is a slowly varying funtion.
Let

µ := EX.

Now we introdue a sale parameter T , i.e., onsider a family of

Poisson �ows depending on T , in suh a way that

λT (t) = λ(t)T β , β > 0

for t ∈ R.

Let NT (t) be a number of laims in the system at time t:

NT (t) =
∞∑

k=−∞

I[Γk≤t<Γk+Xk]

We investigate the total umulative input AT (t)

A(t) = AT (t) =

∫ t

0

NT (s)ds.
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As T → ∞ then AT (t) tends to in�nity too. We will prove that u-

mulative input an be approximated by stable law, when the onnetion

rate is slow. Besides, this approximation does not depend on periodiity

of λ(t) and an be expressed in terms of the average value of λ(t) over
period. On the other hand, for the ase of fast growth of the intensity

we need another normalizing oe�ient and we show that periodiity of

the intensity funtion plays an essential role and in this ase we have for

any point z ∈ [0, τ) its own normal law as a limit.

Introdue a quantile funtion

b(t) =

(
1

F

)←
(t),

where

g←(y) = inf{x : g(x) ≥ y}.
b(t) is a regularly varying funtion with parameter

1
α .

We say that the Fast Growth Condition is ful�lled if

lim
T→∞

b(λTT )

T
= ∞.

We say that the Slow Growth Condition is ful�lled if

lim
T→∞

b(λTT )

T
= 0.

Remarks. Fast Growth Condition is ful�lled if β > α. Slow Growth

Condition is ful�lled if β < α.

Introdue

A∗(T ) =
A(T )− µΛ(T )√
λ(T )T 3F (T )

.

Theorem. It follows from Fast Growth Condition that for any z ∈
[0, τ ]

A∗(nτ + z)
d→ N(0, σ2(z))if n→ ∞,

where

σ2(z) = σ2
1 + σ2

2(z) + σ2
3 ,

σ2
1 =

α

(2− α)(3 − α)
,
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σ2
2(z) =

λ

(3 − α)
∞∫
0

F (u)λ(z − u) du

,

σ2
3 =

λ

(3− α)
∞∫
0

F (u)λ(−u) du
.

Theorem. It follows from Slow Growth Condition that

lim
t→∞

A(T )− µΛ(T )

b(λT )

d→ Xα,

where

EeiθXα = exp
{
− |θ|α

(
1− i · sign(θ) tg πα

2

)}
,

i.e., Xα has α-stable distribution.
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1. Introdution and summary

An interesting quantitative omparison an be obtained by tak-

ing a viewpoint similar to that of the asymptoti relative e�ieny

(ARE) of estimators, and asking for the number m(n) of observations
needed by estimator δm(n)(X1, . . . , Xm(n)) to math the performane

of δ∗n(X1, . . . , Xn) (based on n observations). Although the di�erene

m(n) − n seems to be a very natural quantity to examine, historially

© Bening V.E., Kornievskaya A.A., 2018
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the ratio n/m(n) was pre�ered by almost all authors in view of its sim-

pler behaviour. The �rst general investigation of m(n) − n was arried

out by Hodges and Lehmann [1℄. They name m(n)− n the de�ieny of

δn with respet to δ∗n and denote it as

dn = m(n)− n. (1.1)

If limn→∞ dn exists, it is alled the asymptoti de�ieny of δn with

respet to δ∗n and denote as d. At points where no onfusion is likely, we
shall simply all d the de�ieny of δn with respet to δ∗n.

The de�ieny of δn relative to δ∗n will then indiate how many ob-

servations one loses by insisting on δn, and thereby provides a basis for

deiding whether or not the prie is too high. If the risk funtions of

these two estimators are

Rn(θ) = Eθ

(
δn − g(θ)

)2
, R∗n(θ) = Eθ

(
δ∗n − g(θ)

)2
,

then by de�nition, dn(θ) ≡ dn = m(n) − n, for eah n, may be found

from

R∗n(θ) = Rm(n)(θ). (1.2)

In order to solve (1.1), m(n) has to be treated as a ontinuous variable

(see [1℄). Generally R∗n(θ) and Rn(θ) are not known exatly and we have
to use approximations. Here these are obtained by observing that R∗n(θ)
and Rn(θ) will typially satisfy asymptoti expansions (a.e.) of the form

R∗n =
a(θ)

nr
+
b(θ)

nr+s
+ o

(
n−(r+s)

)
, (1.3)

Rn =
a(θ)

nr
+
c(θ)

nr+s
+ o

(
n−(r+s)

)
, (1.4)

for ertain a(θ), b(θ) and c(θ) not depending on n and ertain onstants

r > 0, s > 0. The leading term in both expansions is the same in view of

the fat that ARE is equal to one. From (1.1)�(1.4) is now easily follows

that (see [1℄)

dn(θ) ≡
c(θ) − b(θ)

r a(θ)
n(1−s) + o

(
n(1−s)

)
. (1.5)

Hene

d(θ) ≡ d =





±∞, 0 < s < 1,

c(θ)− b(θ)

r a(θ)
, s = 1,

0, s > 1.

(1.6)
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A useful property of de�ienies is the following (transitivity): if a third

estimator δ̄n is given, for whih the risk R̄n(θ) also has an expansion of

the form (1.4), the de�ieny d of δ̄n with respet to δ∗n satis�es

d = d1 + d2,

where d1 is the de�ieny of δ̄n with respet to δn and d2 is the de�ieny
of δn with respet to δ∗n.

The situation where s = 1 seems to be the most interesting one.

Hodges nad Lehmann [1℄ demonstrate the use of de�ieny in a number

of simple examples for whih this is the ase (see also [3℄).

In the ommuniation, we disuss the number of appliations of the

de�ieny onept in the problems of point estimation and testing sta-

tistial hypotheses in the ase when number of observations is random.

2. Estimators based on the sample with random size

Consider random variables (r.v.'s) N1, N2, ... and X1, X2, ..., de�ned

on the same probability spae (Ω,A,P). By X1, X2, ..., Xn we will

mean statistial observations whereas the r.v. Nn will be regarded as

the random sample size depending on the parameter n ∈ N. Assume that

for eah n ≥ 1 the r.v. Nn takes only natural values (i.e., Nn ∈ N) and is

independent of the sequene X1, X2, ... Everywhere in what follows the

r.v.'s X1, X2, ... are assumed independent and identially distributed

with distribution depending on θ ∈ Θ ∈ R.

For every n ≥ 1 by Tn = Tn(X1, ..., Xn) denote a statisti, i.e., a

real-valued measurable funtion of X1, ..., Xn. For eah n ≥ 1 we de�ne
a r.v. TNn

by setting TNn
(ω) ≡ TNn(ω)(X1(ω), ..., XNn(ω)(ω)), ω ∈ Ω.

Theorem 2.1.

1. If δn = δn(X1, . . . , Xn) is any unbiased estimator of g(θ) that is,
it satis�es

Eθδn = g(θ), θ ∈ Θ

and δNn
≡ δNn

(X1, . . . , XNn
), then

EθδNn
= g(θ), θ ∈ Θ.

2. Suppose that numbers a(θ), b(θ) and C(θ) > 0, α > 0, r > 0,
s > 0 exist suh that

∣∣∣R∗n(θ)−
a(θ)

nr
− b(θ)

nr+s

∣∣∣ 6 C(θ)

nr+s+α
,

where

R∗n(θ) = Eθ

(
δn(X1, . . . , Xn)− g(θ)

)2
,
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then

∣∣∣Rn(θ)− a(θ)EN−rn − b(θ)EN−r−sn

∣∣∣ 6 C(θ)EN−r−s−αn ,

where

Rn(θ) = Eθ

(
δNn

(X1, . . . , XNn
)− g(θ)

)2
.

Corollary 2.1. Suppose that numbers a(θ), b(θ) and r > 0, s > 0
exist suh that

R∗n(θ) ≡ Eθ

(
δn(X1, . . . , Xn)− g(θ)

)2
=
a(θ)

nr
+
b(θ)

nr+s
,

then

Rn(θ) ≡ Eθ

(
δNn

(X1, . . . , XNn
)− g(θ)

)2
= a(θ)EN−rn + b(θ)EN−r−sn .

Let observationsX1, . . . , Xn have expetation EθX1 = g(θ) and vari-
ane DθX1 = σ2(θ). The ustomary estimator for g(θ) based on n ob-

servation is

δn =
1

n

n∑

i=1

Xi. (2.1)

This estimator is unbiased and onsistent, and its variane is

R∗n(θ) = Dθ δn =
σ2(θ)

n
. (2.2)

If this estimator based on the sample with random size we have (see

Corollary 2.1)

Rn(θ) = Dθ δNn
(X1, . . . , XNn

) = σ2(θ)EN−1n . (2.3)

If g(θ) is given, we onsider the estimator for σ2(θ) in the form

δ̄n =
1

n

n∑

i=1

(Xi − g(θ))2. (2.4)

This estimator is unbiased and onsistent, and its variane is

R̄∗n(θ) = Dθ δ̄n =
µ4(θ)− σ4(θ)

n
, µ4(θ) = Eθ (X1 − g(θ))4. (2.5)
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For this estimator with random size one have

R̄n(θ) = Dθ δ̄Nn
(X1, . . . , Xn) =

(
µ4(θ)− σ4(θ)

)
EN−1n . (2.6)

In the preeding example, suppose that g(θ) is unknown but that instead
of (2.4) we are willing to onsider any estimator of the form (see (2.1))

δ̃(γ)n ≡ δ̃n =
1

n+ γ

n∑

i=1

(
Xi − δn

)2
, γ ∈ R. (2.7)

If γ 6= −1, this will not be unbiased but may have a smaller expeted

squared error that the unbiased estimator with γ = −1.
One easily �nd (see [1℄, (3.6) and [2℄)

R̃∗n(θ) = σ4(θ)
[µ4(θ)/σ

4(θ)− 1

n
+

+
(γ + 1)2 + 2− 2 (γ + 1) (µ4(θ)/σ

4(θ)− 1)

n2

]
+O

(
n−3

)
. (2.8)

Using Theorem 1.1, we have

R̃n(θ) = Eθ

(
δ̃Nn

(X1, . . . , XNn
)− σ2(θ)

)2
=

= σ4(θ)
[
(µ4(θ)/σ

4(θ)− 1)EN−1n +

+
{
(γ+1)2+2−2 (γ+1) (µ4(θ)/σ

4(θ)−1)
}
EN−2n

]
+O

(
EN−3n

)
. (2.9)

3. De�ienies of some estimators based on the samples

with random size

When the de�ienies of statistial estimators onstruted from sam-

ples of random size Nm(n) and the orresponding estimators onstruted

from samples of non-random size n (under the ondition ENn = n)
are evaluated, we atually ompare the expeted size m(n) of a random
sample with n by virtue of the quantity dn = m(n) − n and its limit

value.

We now apply the results of setion 2 to the three examples given in

this setion. Let Mn be the Poisson r.v. with parameter n − 1, n > 2,
i.e.

P
(
Mn = k

)
= e(1−n)

(n− 1)k

k!
, k = 0, 1, . . .
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De�ne the random size as Nn = Mn + 1, then ENn = n and EN−1n =
1
n + 1

n2 + o
(
n−2

)
. The de�ieny of δNn

relative to δn (see (2.1)) is given

by (2.2), (2.3), (3.1) and (1.6) with r = s = 1, a(θ) = σ2(θ), b(θ) = 0,
c(θ) = σ4(θ), and hene is equal to d = 1. Similarly, the de�ieny

of δ̄Nn
relative to δ̄n (see (2.4)) is given by (2.5), (2.6) and (1.6) with

r = s = 1, a(θ) = c(θ) = µ4(θ) − σ4(θ), b(θ) = 0, and hene is equal to

d̄ = 1. Consider now third example (see (2.7)). We have EN−2n ∼ 1
n2 ,

n → ∞. Now the de�ieny of δ̃Nn
relative to δ̃n (see (2.7)) is given

by (2.8), (2.9) and (1.6) with r = s = 1 and hene is equal to d̃ = 1 and

the de�ieny of δ̃
(γ1)
Nn

relative to δ̃
(γ2)
Nn

(see (2.7)) is given by (1.6) with

r = s = 1 and hene is equal to

d̃γ1,γ2 = (γ1 − γ2)
( γ1 + γ2 + 2

µ4(θ)/σ4(θ)− 1
− 2

)
.

These examples illustrate the following

Theorem 3.1. Suppose that numbers a(θ), b(θ) and k1, k2 exist suh
that

R∗n(θ) =
a(θ)

n
+
b(θ)

n2
= o
(
n−2

)

and

EN−1n =
1

n
+
k1
n2

+ o
(
n−2

)
, EN−2n =

k2
n2

+ o
(
n−2

)
,

EN−3n = o
(
n−2

)
,

then the asymptoti de�ieny of δNn
(X1, . . . , XNn

) with respet to

δn(X1, . . . , Xn) is equal to

d(θ) =
k1 a(θ) + b(θ) k2 − b(θ)

a(θ)
.
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In this paper we investigate a single-server retrial queueing system

with ollision of the ustomer and an unreliable server (J. S.Kim [2℄).

The results are provided by the help of software tool MOSEL-2

(T.B�erzes, J. Sztrik,

�

A.T�oth, A.Nazarov [1℄). The number of soures of

alls is �nite and ollision (Nazarov and Kvah and Yampolsky [3℄, T�oth

and B�erzes and Sztrik and Kvah [4℄) an take plae. If a ustomer

�nds the server idle, he enters into servie immediately. The failure of

server blok the system's operation therefore the arriving ustomers an

not enter the system, meaning that those alls are lost. Our interest is

to give the main steady-state performane measures of the system om-

puted by the help of the MOSEL-2 tool. Various �gures represent the

impat of bloking phenomenon on the main performane measures like

mean number of ustomers in the system, mean response time, mean

time spent in servie, mean waiting time (man time spent in the orbit).
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We onsider on�guration graphs where vertex degrees are indepen-

dent identially distributed random variables with di�erent probability

distributions. Con�guration graphs were �rst introdued by Bollobas in

[1℄. Suh random graphs frequently prove useful as models of omplex

ommuniation networks like the transport, telephone, eletri networks,

soial relationships and the main global network � Internet (see, e.g., Hof-

stad [2℄). Let N be a number of verties in the graph. Vertex degrees

form semiedges that are numbered in an arbitrary order. If the sum of

vertex degrees is odd one extra vertex with degree one is added. The

graph is onstruted by joining all the semiedges pairwise equiprobably

to form edges. Those graphs admit multiple edges and loops. Numerous

observations of real networks suggest that the distribution of degree ξ of
eah vertex an be spei�ed by the relation

P{ξ > k} =
h(k)

kτ
, k = 1, 2, . . . , τ > 0, (1)

© Cheplyukova I.A., Pavlov Yu.L., 2018
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where h(k) is a slowly varying funtion. Reittu and Norros [3℄ are sure

that the funtion h(k) in (1) does not in�uene limit results as N → ∞
and we an replae h(k) with the onstant 1. Then

P{ξ = k} = k−τ − (k + 1)−τ , k = 1, 2, . . . , τ > 0. (2)

Reently there appeared some works where the authors note that with

the network size growth the vertex degree distributions may hange and

even beome random.

We onsider two types of onditional on�guration graphs. One of

them is a subset of graphs where the sum of vertex degrees is known

and it is equal to n. In the other subset the sum of vertex degrees

was bounded from above by n. Suh onditional graphs an be use-

ful for modeling of networks for whih we an estimate the number of

links. They are useful also for studying networks without onditions

on the number of edges by averaging the results of onditional graphs

with respet to the distribution of the sum of degrees. Assume that

the parameter τ of distribution (2) depends on N or it is a random

variable. For di�erent types of parameter τ behaviour we �nd the lim-

iting distributions of the maximum vertex degree and of the number

of verties with a given degree for various zones of onvergene N and

n to in�nity (see Pavlov, Cheplyukova [4,5℄). The main results of this

work are limit theorems for the same degree struture harateristis of

onditional on�guration graphs when the distribution of ξ is unknown
and we an estimate only limit behaviour of the distribution tail. There

results were proved using the generalized alloation sheme whih was

studied by Kolhin [6℄ and its analogue (Chuprunov and Fazekas [7℄).

Our theorems an be looked as appliations of this sheme in the ase

of independent random variables with unknown distributions.
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Let the probability distribution of a random variable ξ be given by

the density funtion f0 = f0[x, θ] with respet to some σ-�nite mea-

sure ν, whih is either a Lebesgue measure or a ounting measure, and

θ = (θ1, . . . , θs) ∈ Θ0 ⊂ Rs
is an unknown s-dimensional distribution

parameter. There is a sample X = (X1, . . . , Xn), whose elements are
independent random variables having the same distribution F0 as the

random variable ξ.
The problem of testing a omplex hypothesis H0 : f0[x, θ] ∈ P =

{f0 : f0 ∈ f0} is onsidered with the help of the Pearson's hi-squared

test. In this ase, the hypothesis

H ′0 : P (ξ ∈ ∆j) = πj [θ], θ ∈ Θ0, j = 1, . . . , J − 1,

is usually veri�ed instead of H0. Here

πj [θ] =

∫

∆j

f0[x, θ]ν[dx] = EF0 I∆j
[ξ];

∆1, . . . ,∆J are atoms of a partition of the support for the distribution

of ξ, J > s; IB [x] is the indiator of the event x ∈ B.
If θ is the known parameter, then the hypothesis H ′0 is veri�ed with

the help of statistis

X2
n[θ] =

J∑

j=1

(Uj − nπj [θ])
2

nπj [θ]
=

1

n

J∑

j=1

U2
j

πj [θ]
− n, (1)
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where Uj is the number of sampling elements belonging to the atom ∆j .

If instead of the unknown parameter θ, its maximum likelihood es-

timate θ̃n is used for the sample X, then the Nikulin�Rao�Robson test

[1℄ is used to verify the omplex hypothesis H ′0. If

G[θ] = i[θ]−CC⊤

is a nondegenerate matrix, then the statistis Y 2
n of this riterion is

de�ned by the equation

Y 2
n = X2

n[θ̃n] + υ̃
⊤G−1[θ̃n] υ̃/n, (2)

where i[θ] is a Fisher's information matrix for X1, ĩℓ1ℓ2 is an element of

the matrix i[θ̃n], υ̃ = (υ̃1, . . . , υ̃s)
⊤ , G[θ̃n] = (g̃ℓ1ℓ2)s×s ,

C =

(
1√
πj [θ]

∂πj [θ]

∂θi

)

s×J

, υ̃j =

J∑

i=1

Ui

πi[θ̃n]

∂πi[θ̃n]

∂θj
,

g̃ℓ1ℓ2 = ĩℓ1ℓ2 −
J∑

j=1

1

πj [θ̃n]

∂πj [θ̃n]

∂θℓ1

∂πj [θ̃n]

∂θℓ2
.

Aording to [1, Theorem 2.3℄, if the ertain regularity onditions

A are satis�ed and n → ∞, then a sequene of values of statistis (2)

onverges to a random variable having the hi-square distribution with

J − 1 degrees of freedom χ2
J−1. This result is the basis of the asymptoti

Nikulin-Rao-Robson test : the hypothesis H ′0 should be rejeted with an

asymptoti signi�ane level α if Y 2
n ≥ χ2

1−α[J − 1], where χ2
1−α[J − 1]

is the (1− α)-quantile of the distribution χ2
J−1.

A generalization of this riterion on the basis of hi-squared statistis

χh is proposed below. New riterion allows to verify a more general null

hypothesis than H ′0

H ′′0 : EF0hj [ξ] = µj [θ], j = 1, . . . ,m. (3)

Here {µj [θ], j = 1, . . . ,m} are the mathematial expetations for a

given set of funtions {hj[x], j = 1, . . . ,m} alulated on the basis of

the hypothetial distribution F0 of the random variable ξ. Note that

the null hypothesis H ′0 orresponds to the set of indiator funtions

hj [x] = I∆j
[x], j = 1, . . . , J − 1.

Limit behavior of the test statistis χh is desribed by the following

statement.
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Theorem. Suppose the onditions A are satis�ed and the vetor fun-

tion h[x] = (h1[x], . . . , hm[x])
⊤
has the following properties :

(i) the vetor funtion µ[θ] = (µ1[θ], . . . , µm[θ])
⊤
= EF0h[ξ] is on-

tinuously di�erentiable at the point θ;

(ii) the ovariane matrix of the vetor h[ξ], Σh[θ] = VF0h[ξ], and
the information matrix i[θ] are ontinuous at the point θ;

(iii) the matries Σh[θ] and ψ[θ] = i[θ] − µ̇⊤[θ]Σ−1h [θ] µ̇[θ], where
µ̇[θ] = (∂µi[θ]/∂θj)m×s, are not degenerate.

Then under the hypothesis H ′′0 , the statistis

χh =
1

n

{
(u− nµ̃)

⊤
Σ−1h [θ̃n] (u− nµ̃) + ṽ⊤ψ−1[θ̃n]ṽ

}
, (4)

u =

n∑

i=1

h[Xi], µ̃ = µ[θ̃n], v[θ] = µ̇⊤[θ]Σ−1h [θ] (u− nµ̃) , ṽ = v[θ̃],

onverges in distribution to a random variable having a distribution χ2
m,

when n→ ∞.

This result allows to onstrut a riterion for testing the hypothesis

H ′′0 .

Generalized Nikulin�Rao�Robson test. Hypothesis H ′′0 is re-

jeted with asymptoti level of signi�ane α, if χh ≥ χ2
1−α[m], where

χ2
1−α[m] is the (1 − α)-quantile of the hi-square distribution with m

degrees of freedom.

Expliit formulas for omputing the statistis χh sueeded to get in

the following ases:

hj [x] = ηj [x]I∆j
[x], j = 1, . . . ,m, m ≤ J, (5)

hj [x] =

{
ηj [x]I∆j

[x], ïðè j = 1, . . . , J,

I∆j−J
[x], ïðè j = J + 1, . . . ,m,

m− J ≤ J − 1, (6)

hj [x] =





ηj [x]I∆j
[x], ïðè j = 1, . . . ,M,

I∆j
[x], ïðè j =M + 1, . . . , J,

I∆j−J
[x], ïðè j = J + 1, . . . ,m,

m− J ≤M − 1, (7)

h[x] =
(
I∆1 [x], . . . , I∆J−1 [x], hJ [x]

)⊤
. (8)

It was found that one of the terms of eah formulas obtained has the

form of the right-hand side of equation (1). This fat takes plae in the

ase of statistis (2).

35



XXXV International Seminar on Stability Problems for Stohasti

Models

Comment. If weak regularity assumptions are satis�ed, then the limit

distribution of the statistis χh is the same as in the ase when the limits

of the atoms are not pre-�xed but are hosen as data funtions.

In [2℄�[4℄, we have previously onsidered speial ases of onstruting

hi-squared tests for heking null hypothesis for the one-parameter form

H ′′0 .
Comparison of the power of the generalized Nikulin�Rao�Robson test

for hj [x] = x I∆j
[x], j = 1, . . . , J − 1, with the power of other two hi-

square tests for heking the hypothesis about the normal distribution

law of the random variable ξ ∼ N (µ; σ2), will be ful�lled in the �nal part
of our submission. The power values for other two tests an be found in

[5℄. As alternative distributions, we onsider the logisti and generalized

normal distributions with 4 as the form parameter. The reason is that

these distributions are the nearest ones to the given normal distribution.

The appropriate probability density funtions are de�ned as follows:

f1[x] =
1

β1

exp

[
−x− µ

β1

]

(
1 + exp

[
−x− µ

β1

])2 , β1 = σ

√
3

π
,

f2[x] =

√
2

β2Γ[1/4]
exp

[
− (x− µ)4

4β4
2

]
, β2 = σ

√
Γ[1/4]

2Γ[3/4]
.
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The retrial queuing model with a single server providing two phases

of servie has many appliations and has reeived signi�ant attention in

the literature. One an �nd important appliations of the two-phase ser-

vie models in multimedia ommuniations, paket transmissions, pro-

dution lines and teleommuniation systems. The paper of I. Dimitriou

& C. Langaris [2℄ presented an analysis of a retrial queue with two phases

of servie and server vaation. Every ustomer was plaed in a single

queue while waiting to be served. When a ustomer �nished the �rst

stage of servie, then, he either went to the seond phase with probabil-

ity 1 − p or, with probability p, departed and joined a retrial box from

whih he repeated the demand for the seond phase, and left the system

after servie ompletion.

In this paper, we onsider the problem of a dynami routing ontrol

retrial queue with a single server providing two phases of servie. Cus-

tomers arrive to the system aording to a Poisson proess with param-

eter λ. The servie for eah ustomer onsists of 2 independent phases

d1 and d2, eah of whih has an exponential distribution with mean 1/µ.
Every ustomer must reeive servie in two phases before leaving the sys-

tem. Arriving ustomers join a single ordinary queue and wait to start

their servie sequenes in the �rst phase. At the end of the �rst phase

d1, the server may start omputing the seond phase d2 for the same

ustomer or stop the atual servie sequene in phase 1 and plae the

ustomer in the retrial box. In the latter ase, the server immediately

serves the next ustomer in the �rst phase. The ustomers in the retrial

box make a servie request with respet to a Poisson proess with rate

θ and an reeive the seond phase d2 only when the server is idle. The

holding ost per ustomer per unit time in the primary queue is c1 and
the retrial box is c2. The goal is to �nd a routing poliy that minimizes

the expeted total disounted holding ost over in�nite horizon.

© Dahmane Z., Aissani A., 2018
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The problem of routing ontrol in the retrial queue an be formulated

as a semi-Markov deision proess in whih the deision epoh is the

servie ompletion point of the �rst stage d1. At a deision epoh, the

system ontroller must deide whether to keep the ustomer in servie

or route him to the retrial box. When in servie, the ustomer reeives

servie d2 and then, leaves the system. When in the retrial box, the

ustomer waits for a random amount of time and then, tries to �nd the

server available again to omplete the seond phase of servie d2 and

leaves the system. The deision is taken aording to the state of the

system and the ost indued by this state and it is based essentially on

minimizing the ost of waiting in the system.

State de�nitions. We note that the presene of i ustomers in the

primary queue means that there are i − 1 ustomers on hold and one

ustomer in servie. When a ustomer enters servie, the 2 assoiated

phases are served one at a time; thus, i ustomers in the primary queue

orresponds to 2 i (or 2 i− 1) phases (see Tijms [8℄, hap.2, p.104). Con-
sequently, we an distinguish between states (2 i, j) and (2 i−1, j), where
2 i, (2 i− 1)) denotes the number of servie phases yet to be ompleted
and j denotes the number of ustomers in the retrial box. Finally, the

state of the server is desribed as odd or even using the symbols (2 i and
2 i− 1).

Therefore, the state spae of the retrial queuing system is

S = {(2i, j), ((2i− 1)+, j) / i, j = 0, 1, 2, ...}.
Under some regularity onditions, we prove the existene of an op-

timal poliy that minimizes the expeted total disounted ost of the

system. In the ase of soially optimal routing poliies, we show that

suh a poliy is desribed by a swithing urve based on the number of

ustomers in the system.

We onjeture that the optimal threshold is a non-dereasing funtion

of the number of ustomers in the retrial box. The struture of our

swithing urve is shown in Fig. 1. Numerial results for the optimal

threshold for di�erent parameter values are provided and on�rm the

validity of this result.
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Let X1, . . . , Xn be independent random variables on a ommon

probability spae (Ω,F ,P) with EXk = 0, EX2
k = σ2

k < ∞ and B2
n =∑n

k=1 σ
2
k > 0. Denote

σ2
k(z) = EX2

k1(|Xk| > z), Ln(z) =
1

B2
n

n∑

k=1

σ2
k(zBn), z > 0,

µk(z) = EX3
k1 (|Xk| < z) , Mn(z) =

1

B3
n

n∑

k=1

µk(zBn), z > 0,

Fn(x) = P(X1 + . . .+Xn < xBn), Φ(x) =
1

2π

∫ x

−∞

e−t
2/2dt, x ∈ R,

∆n = ∆n(F1, . . . , Fn) = sup
x∈R

|Fn(x)− Φ(x)| .

For every ε > 0, γ > 0 we prove inequalities

∆n 6 CE · L3
E,n(ε, γ), L3

E,n(ε, γ) := sup
0<z6ε

{γ|Mn(z)|+ zLn(z)} , (1)

∆n 6 CR · L3
R,n(ε, γ), L3

R,n(ε, γ) :=
(
γ|Mn(ε)|+ sup

0<z6ε
zLn(z)

)
, (2)

where onstants CE = CE(ε, γ), CR = CR(ε, γ) depend only on ε, γ.
These inequalities improve and generalize Esseen's and Rozovskii's

results [1℄,[2℄ and, aording to Zolotarev's [3℄ lassi�ation, an be alled

natural onvergene rate estimates in the Lindeberg�Feller theorem.

Similary to Kolmogorov [4℄, where the lassial Berry�Esseen inequal-

ity was disussed, we also introdue the so-alled asymptotially exat

onstants in (1), (2)

C∗E(ε, γ) = lim sup
ℓ→0

sup
n,F1,...,Fn

{
∆n(F1, . . . , Fn)/ℓ : L

3
E,n(ε, γ) = ℓ

}
,

C∗R(ε, γ) = lim sup
ℓ→0

sup
n,F1,...,Fn

{
∆n(F1, . . . , Fn)/ℓ : L

3
R,n(ε, γ) = ℓ

}
,

© Gabdullin R.A., Makarenko V.A., Shevtsova I.G., 2018
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and present their upper bounds for every ε > 0 and γ > 0.
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Following [1�3℄, onsider ompeting risks model, where we are inter-

ested in observing of random variable (r.v.) Z with distribution funtion

(d.f.) H and pairwise disjoint events

{
A(i)

, i ∈ J = {1, ..., k}
}
, suh that

P
( k⋃

i=1

A(i)
)
= 1

(see, [3℄). In fat, we are interested in joint properties of pairs

{(
Z,A(i)

)
,

i ∈ J
}
.

Let's introdue subdistribution funtions

{
H(x; i) = P

(
Z ≤ x,A(i)

)
, (x; i) ∈ R× J

}
,

for whih H(x; 1) + ... + H(x; k) = H(x). Here we suppose that the

pairs

{(
Z,A(i)

)
, i ∈ J

}
are ensored from right and left by r.v.-s Y

© Kakadjanova L.R., 2018
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and L with orresponding d.f.-s G and K and that r.v.-s {Z, Y, L} are

independent.

Observation is available the sample

S(n) =

{(
ζj ;χ

(0)
j ;χ

(1)
j , ..., χ

(k)
j

)
, j = 1, ..., n

}
,

where

ζj = max
{
Lj,min{Zj, Yj}

}
, χ

(i)
j = I

(
D

(i)
j

)
, i ∈ J = J ∪ {0},

D
(0)
j =

{
min{Zj, Yj} < Lj

}
∪ {Lj ≤ Yj < Zj},

D
(i)
j = A

(i)
j ∩ {Lj ≤ Zj ≤ Yj}, i ∈ J

and

{
Zj , Lj, D

(0)
j , D

(1)
j , ..., D

(k)
j , j ≥ 1

}
onsequene of independent and

identially distributed opies of aggregate

{
Z,L, Y,D(0), D(1), ..., D(k)

}
.

It is not di�ult to see that d.f. of r.v. ζ = max
{
L,min{Z, Y }

}
is

E(x) = P(ζ ≤ x) = K(x)
[
1−

(
1−G(x)

) (
1−H(x)

)]
.

Note that in the sample S(n)
random pairs

(
Zj , A

(i)
j

)
observable only in

the ase of χ
(i)
j = 1, i ∈ J .

Consider survival funtionals (exponentional-hazard funtions)

1− Fτ (x; i) = exp
[
− Λτ (x; i)

]
, i ∈ J

and their estimators

1− Fnτ (x; i) = exp
[
− Λnτ (x; i)

]
, i ∈ J,

where

Λτ (x; i) =

∫

[τ ;x]

dH(u; i)

1−H(u−)
, (x; i) ∈ [τ,∞)× J,

Λnτ (x; i) =
1

n

n∑

j=1

I(ζj ≤ x, χ
(i)
j = 1)

qn(ζj)
, qn(x) = Kn(x)−∆T1n(x; 0),

T1n(x; 0) =
1

n

n∑

j=1

I
(
ζj ≤ x, χ

(0)
j = 1

)
, En(x) =

1

n

n∑

j=1

I(ζj ≤ x),

Kn(x) = exp
[
−
∫

[x,∞)

dT1n(u; 0)

En(u−)

]
.

42



XXXV International Seminar on Stability Problems for Stohasti

Models

Let Lq(Q) be the spae of funtions f : R → R with the norm

‖f‖Q,q =
{∫

R

|f |q dQ
}1/q

, where Q(x) =

x∫

τ

dE(u)

[K(u)(1− γ(u−))]2
.

We introdue some notations from metri entropy theory in [4℄ adapting

to onsidered ompeting risks model.

Let hq(ε) = log N[]

(
ε,F ,Lq(Q)

)
be the metri entropy with the

braketing number N[]

(
ε,F ,Lq(Q)

)
of the lass F in Lq(Q). We de-

�ne also the integral of the metri entropy with braketing as

J
(q)
[] (δ) = J[]

(
δ;F ;Lq(Q)

)
=

∫ δ

0

[
hq(ε)

]1/2
dε, 0 < δ ≤ 1.

Introdue F-indexed proess for eah i ∈ J as

G(i)
n f =

∫ T

τ

f(x) d
(
Fnτ (x; i)− Fτ (x; i)

)
, f ∈ F ,

where τ < T < TQ = sup [x : Q(x) <∞].

Theorem 1. Suppose that F ⊂ L1(Q) and J
(1)
[] (1) < ∞. Then as

n→ ∞
sup
f∈F

∣∣∣G(i)
n f
∣∣∣ a.s.−→ 0, i ∈ J.

Theorem 2. Let lass F suh that F ⊂ L2(Q) and J
(2)
[] (1) < ∞.

Then for eah i ∈ J as n → ∞ proesses {√nG(i)
n f, f ∈ F} onverges

weakly in l∞(F) to orresponding mean zero Gaussian proess.

These theorems an be used for estimation of unknown parameter

θ ∈ Θ ⊆ R. Let fθ : R → R be some loss funtion and F = {fθ, θ ∈ Θ}.
For example, (a) in loation estimation: Θ = R and fθ(x) = (x − θ)2

(estimating the mean); fθ(x) = |x− θ|2 (estimating the median); (b) in
maximum likelihood: {hθ, θ ∈ Θ} is a family of densities and fθ(x) =
− log hθ(x). We estimate θ by M�estimator

θn = Arg max
(θ;i)∈Θ×J

{∫
fθ(x) dFnτ (x; i)

}
.

Assume that θn exists. Then under mild onditions on lass F , from
theorems 1 and 2 one an obtain a strong onsisteny and asymptotial

normality properties of estimator θn.
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Now onsider situation in whih {fh,θ, h ∈ H, θ ∈ Θ} is given ol-

letion of measurable funtions fh,θ : R → R indexed by parametrial

sets H and Θ. For estimator θn we prove that

sup
h∈H

∣∣∣G(i)
n

(
fh,θn − fh,θ

) ∣∣∣ P→ 0, i ∈ J, n→ ∞. (1)

The result (1) helps to derive the limit behaviors of estimators

{Fnτ (·; i) fh,θn, i ∈ J} by using deomposition
√
n
[
Fnτ (·; i) fh,θn − Fτ (·; i) fh,θ

]
= G(i)

n

(
fh,θn − fh,θ

)
+

+ G(i)
n fh,θ +

√
nFnτ (·; i)

(
fh,θn − fh,θ

)
, i ∈ J.
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A �rst integral for stohasti equations. Let (Ω, F, {Ft}T0 ,P) be a
probability spae with �ltration. Suppose that γ is a vetor with values

in Rγ := Rn′

, W (t) is an m−dimensional Wiener proess, ν(△t;△γ)
© Karahanskaya E.V., 2018
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is the standard Poisson measure on [0, T ] × Rn
whose values are inde-

pendent Poissonian random variables on disjoint intervals and sets. The

one-dimensional Wiener proesses Wk(t), k = 1, . . . ,m, and the Pois-

son measure ν([0;T ]) are de�ned on the above-mentioned probability

spae, Ft-measurable, and mutually independent. Note that the ran-

dom funtions appearing below are Ft-measurable and adapt with the

above proesses.

Let us onsider a system of stohasti di�erential Ito's equations

(from now on we use summation onvention for repeated indies)

dXi(t) = ai
(
t,X(t)

)
dt+ bi,k

(
t,X(t)

)
dWk(t)

+

∫

Rγ

gi
(
t,X(t), γ

)
ν(dt, dγ), (1)

X(0) = X0, i = {1, ..., n}, n ≥ 2,

under onditions ai(t,X) ∈ C1,1
t,x , bij(t,X) ∈ C1,2

t,x , gi(t,X, γ) ∈ C1,2,1
t,x,γ ,

X = (X1, . . . , Xn).

Refer to a random funtion S(t;X ;ω) de�ned on the same prob-

ability spae as a solution to (1) as a stohasti �rst integral of the

jump di�usion equations system (1) if the following ondition holds [1℄:

S(t,X(t,X0, ω)) = S(0, X0) (P−a.s) for all solution X(t) = X(t,X0, ω)
to system (1).

In ase when we onsider only one realization, a funtion s(t;X) =
S(t;X ; ω̃), ω̃ ∈ Ω is alled a �rst integral of the system (1).

A non-random funtion s(t;X) ∈ C1,2
t,x is a �rst integral of system (1)

if and only if it satis�es the onditions [1℄:

1.

∂s(t;X)

∂t
+
∂s(t;X)

∂Xi

[
ai(t;X)− 1

2
bj k(t;X)

∂bi k(t;X)

∂xj

]
= 0 ;

2. bi k(t;X)
∂s(t;X)

∂Xi
= 0, for all k = {1, . . . ,m};

3. s(t;X)− s
(
t;X + g(t;x; γ)

)
= 0 for all γ ∈ Rγ .

A generalized It�o�Wentzell formula. This result we obtained us-

ing by a Generalized It�o�Wentzell formula or It�o�Wentzell formula with

Jumps (2). Let us note: ∂Xi
F =

∂F (t,X)

∂Xi

∣∣
X=X(t,Y )

for any funtion

F (t,X(t, Y )).
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Generalized It�o�Wentzell formula [1,3℄: Let X(t, Y ) ∈ Rn
is a solu-

tion for SDE (1) and F (t,X(t,y)) is a stohasti proess, F (t,X) ∈ C1,2
t,x .

Suppose that a random funtion F (t,X, ω) satis�es the equation

dtF (t,X) = Q(t,X)dt+Dk(t,X)dWk(t) +

∫

Rγ

G(t,X, γ)ν(dt, dγ)

under onditions: Q(t,X) ∈ C1,2
t,x , Dk(t,X) ∈ C1,2

t,x , G(t,X, γ) ∈ C1,2,1
t,x,γ .

Then it holds:

dtF (t,X(t, Y )) = Dk(t,X(t, Y )) + bi k(t,X(t, Y )) ∂Xi
F ) dWk(t)

+ (Q(t,X(t, Y )) + ai(t,X(t, Y )) ∂Xi
F + bi k(t,X(t, Y )) ∂Xi

Dk+

+ 2−1 bi k(t,X(t, Y ))bj k(t,X(t, Y ))∂2XiXj
F ) dt

+

∫

Rγ

G(t,X(t, Y ) + g(t,X(t, Y ), γ)) ν(dt, dγ)

+

∫

Rγ

[F
(
t,X(t, Y ) + g(t,X(t, Y ), γ)

)
− F (t,X(t, Y ))] ν(dt, dγ). (2)

Constrution of the di�erential equations system. The onditions

for a �rst integral above allow us to onstrut a system of stohasti dif-

ferential Ito's equations (as well as non-stohasti di�erential equations

system) whih has a funtion s(t,X(t)) as a �rst integral [2℄. This is

proved be the statistial modeling of random proesses with invariants

[4℄.

Programmed ontrols with probability 1 for a dynamial system.

Now we an apply our results to ontrol problem for dynamial systems.

A programmed ontrol with probability 1 is alled a ontrol of

stohasti system whih allows to preserve a onstant value with prob-

ability 1 for the same funtion whih depends on this system's position

for any long time periods.

Consider the stohasti non-linear jump di�usion equations system:

dX(t) =
(
P (t;X(t)) +R(t;X(t)) · u(t;X(t))

)
dt

+B(t;X(t)) dW (t) +

∫

Rγ

Ξ(t;X(t); γ) ν(dt; dγ), (3)

where P (·), R(·) are given matrix funtions and B(·), Ξ(·) are given or

unknown ones. For suh systems we onstrut the programmed ontrol

u(t;X(t)) with probability 1 (PCP1) whih allows the system (3) to
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be on the given manifold {u(t;X(t))} = {u(0;X0} for eah t ∈ [0;T ],
T ≤ ∞. The programmed ontrol u(t;X(t)) is solution for the algebrai
system of linear equations.

Example. Let us onstrut a PCP1 for a dynamial system

dX1(t) =
(
X1(t) +X2(t) + e−t + u1(t,X(t))

)
dt+ b1(t,X(t))dW (t)

+

∫

Rγ

g1(t,X(t); γ) ν(dt, dγ),

dX2(t) =
(
X1(t)X2(t) + e−2t + u2(t,X(t))

)
dt+ b2(t,X(t)) dW (t)

+

∫

Rγ

g2(t,X(t); γ) ν(dt, dγ),

so a relation s(t,X(t) = X2(t)e
−2X1(t) = s(0, X(0)) ≡ s0 holds.

Then we obtain:

u1(t,X(t)) = − f1(t;X(t))

f2(t;X(t)) + 2 f3(t,X(t))X2(t)

+ 2 q2oo(t;X(t)) e−4X1(t) −X1(t)−X2(t)− e−t,

u2(t,X(t)) = − 2 f1(t;X(t))X2(t)

f2(t;X(t)) + 2 f3(t;X(t))X2(t)
−X1(t)X2(t)− e−2t,

b1(t,X(t)) = qoo(t,X(t)) e−2X1(t),

b2(t,X(t)) = qoo(t,X(t)) 2X2(t) e
−2X1(t),

g1(t;X(t); γ) = 0.5 ln
[
2 γ + e2X1(t)

]
−X1(t),

g2(t;X(t); γ) = 2X2(t) γ e
−2X1(t).

Fig. 1 shows one sample trajetory of the random proess X(t) (three
oordinates; horizontal line indiates values of the funtions s(tk, X(tk)).
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Fig. 1: Sample trajetory of the random proess X(t) (oordinates, values of
the �rst integral)

4. T.A.Averina, E.V.Karahanskaya, K.A.Rybakov, Statistial analysis

of di�usion systems with invariants, Russian Journal of Numerial Anal-

ysis and Mathematial Modelling 33:1 (2018) 1�13.

Quality of servie estimation in teleommuniation

system with nonhomogeneous input �ow

Yu. S. Khokhlov

1

1
Mosow State University, Mosow, Russia, yskhokhlov�yandex.ru

The problem of quality of servie estimation is the most impor-

tant one in teleommuniation systems analysis. In our previous work

(Khokhlov, Lukashenko, Morozov [2℄) using the methodology proposed

in the paper of Norros [1℄ we propose some lower asymptoti estimate of

the over�ow probability of large bu�er when the input is a stream on-

sisting of two independent omponents: the frational Brownian motion

and stable Levy motion with same Hurst parameters. Now we onsider

the ase of di�erent Hurst parameters.

We onsider the single-server �uid queue whih is fed by the following

input proess: A(t) = mt+σ1BH1(t)+σ2Lα(t), t ≥ 0, where wherem >
0 is the mean input rate; BH1 = (BH1(t), t ∈ R) is a frational Brownian
motion (FBM) with Hurst parameter H1, and Lα = (Lα(t), t ∈ R) is
symmetri α-stable Levy motion. Both proesses are self-similar with

indexes H1 and H2 = 1/α respetively. In what follows we assume that

H1 6= H2, 1/2 < H1, H2 < 1, σ1 = σ2 = σ, the proesses BH1 and Lα

© Khokhlov Yu.S., 2018
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are independent. We are interested in estimation of so-alled over�ow

probability, i.e. the probability that stationary workload Q exeeds some

threshold level b, namely ε(b) := P [Q > b]. Denote H = min(H1, H2).
Our main result is the following estimate: for large b > 0

ε(b) ≥ C · b−(1−H)·α.

This researh is supported by Russian Foundation for Basi Researh,

projet 18-07-00678.
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Statistial proedures for network strutures

identi�ation with invariant risk funtion

P. A. Koldanov

1
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Network model of a omplex system is a omplete weighted graph

where nodes orresponds to the elements of the system and weights of

edges are given by some measure of onnetion between them. Net-

work models are widely used in the stok market network analysis Man-

tegna [1℄, Boginski [2℄, Boginski [3℄. Nodes of the network model orre-

spons to the stoks of the stok market and weights of edges are given

by Pearson orrelations between �utuations of stok returns.

Di�erent network strutures whih ontain a key information of net-

work models are analyzed. Minimum spanning tree (MST) Mantegna [1℄,

planar maximally �ltered graph (PMFG) and market graph Boginski [2℄,

Boginski [3℄ are most popular network strutures in market network anal-

ysis.

Key problem is to identify these network strutures by observations

of stoks return �utuation. Traditional approah to the problem is to

© Koldanov P.A., 2018
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alulate Pearson orrelation for any pair of stoks and to apply orre-

sponding algorithms to network strutures identi�ation. At the same

time the statistial properties of the algorithms suh as unbiasedness,

invariane, optimality are unknown.

In the presentation the onept of random variables network is in-

trodued. Random variables network is a pair (X, γ) , where vetor

X = (X1, X2, . . . , Xp) has multivariate distribution and γ = (γij =
γ(Xi, Xj)) is a measure of similarity between Xi and Xj . It is easy to

see that traditional approah is based on appliation of orresponding

algorithms of network strutures identi�ation to Pearson orrelation

network.

In the presentation the sign random variables network Kalyagin [4℄ is

introdued whih is based on measure P ((Xi−µi)(Xj−µj) > 0) - proba-
bility of sign oinidene of two random variablesXi and Xj with respet

to their shift parameters. It is shown that if vetorX = (X1, X2, . . . , Xp)
has multivariate elliptially ontoured distribution ECD(µ,Λ, g) with
known µ then network strutures in Pearson orrelation network and

network strutures in sign orrelation network are oinide. The pro-

edures for network strutures identi�ation in sign orrelation network

are onstruted. It is proved in Kalyagin [4℄ that these proedures have

invariant risk funtion with respet to funtion g.
In Koldanov [5℄ the ase of unknown µ is onsidered. The random

variable network with measure P ((Xi(t) −X i)(Xj(t) −Xj) > 0) is in-
vestigated. It is proved that if matrix of observations




X1(1)
X2(1)
. . .
Xp(1)

X1(2)
X2(2)
. . .
Xp(2)

. . .

. . .

. . .

. . .

X1(n)
X2(n)
. . .
Xp(n)




has matrix elliptially ontoured distribution Gupta [6℄ then

P ((Xi − µi)(Xj − µj) > 0) = P ((Xi(t)−Xi)(Xj(t)−Xj) > 0)

∀t = 1, . . . , n; ∀i, j = 1, . . . , p, i 6= j.

It implies that network strutures in network model with measure

P ((Xi−µi)(Xj−µj) > 0) and network strutures in network model with
measure P ((Xi−Xi)(Xj−Xj) > 0) are oinide. Moreover it implies the

property of invariant risk funtion of proedures for network strutures

identi�ation in sign orrelation network with respet to unknown µ.

Aknowledgements. This work is partially supported by RHRF

grant � 18-07-00524.
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Probabilisti methods for the analysis

of frational and generalized frational partial

di�erential equations
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From the point of view of stohasti analysis the Caputo and

Riemann�Liouville derivatives of order α ∈ (0, 2) an be viewed as (reg-
ularized) generators of stable L�evy motions interrupted on rossing a

boundary. This interpretation naturally suggests fully mixed, two-sided

or even multidimensional generalizations of these derivatives, as well as

a probabilisti approah to the analysis of the related equations. These

extensions are introdued and some well-posedness results are obtained

that generalize, simplify and unify lots of known fats. This probabilis-

ti analysis leads one to study a lass of Markov proesses that an be

onstruted from any given Markov proess in Rd
by bloking (or in-

terrupting) the jumps that attempt to ross ertain losed set of 'hek-

points'. As examples we present wide lasses of generalized frational

©Kolokoltsov V.N., 2018
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equations giving probabilisti interpretations of their solutions in terms

of the Dynkin type martingales and/or hronologial operator-valued

extensions of the Feynman�Ka formulas. Main ideas of the talk are

disussed in more detail in the publiations given below.
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Mixed probability models are proposed for statistial regularities in

the behavior of suh harateristis of rainfall data as the duration of

© Korolev V.Yu., Gorshenin A.K., 2018
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a wet period, maximum daily preipitation within a wet period and to-

tal preipitation volume per a wet period. The base for the models is

the generalized negative binomial (GNB) distribution. The results of

�tting the GNB distribution to real data are presented and demonstrate

exellent onordane of the GNB model with the empirial distribu-

tion of the duration of wet periods measured in days. Based on this

GNB model, asymptoti approximations are proposed for the distribu-

tions of the maximum daily preipitation volume within a wet period

and of the total preipitation volume for a wet period. The asymptoti

distribution of the maximum daily preipitation volume within a wet

period turns out to be a tempered sale mixture of the gamma distribu-

tion in whih the sale fator has the Weibull distribution, whereas the

asymptoti approximation for the total preipitation volume for a wet

period turns out to be the generalized gamma (GG) distribution. Both

approximations appear to be very aurate. These asymptoti approxi-

mations are dedued using limit theorems for statistis onstruted from

samples with random sizes having the generalized negative binomial dis-

tribution. Based on these models, two approahes are proposed to the

de�nition of abnormally extremal preipitation. These approahes im-

prove the existing ones [1℄, [2℄, [3℄. The �rst approah to the de�nition

(and determination) of abnormally extreme preipitation is based on the

distribution of the maximum daily preipitation of the form of a tem-

pered sale mixture of the gamma distribution in whih the sale fator

has the Weibull distribution. The analyti and asymptoti properties of

this distribution are disussed. Aording to the �rst approah, a daily

preipitation volume is onsidered to be abnormally extremal, if it ex-

eeds a ertain (pre-de�ned) quantile of this distribution. The seond

approah is based on that the total preipitation volume for a wet period

has the GG distribution. This model is dedued as a version of the law of

large numbers for random sums in whih the number of summands has

the GNB distribution. Hene, the hypothesis that the total preipitation

volume during a ertain wet period is abnormally large at a given time

horizon an be formulated as the homogeneity hypothesis of a sample

from the GG distribution. Two equivalent tests are proposed for testing

this hypothesis. One of them is based on the beta distribution whereas

the seond is based on the Snedeor�Fisher distribution. Both of these

tests deal with the relative ontribution of the total preipitation volume

for a wet period to the onsidered set (sample) of suessive wet periods.

Within the seond approah it is possible to introdue the notions of rel-

atively abnormal and absolutely abnormal preipitation volumes. The
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results of the appliation of this test to real data are presented yielding

the onlusion that the intensity of wet periods with abnormally large

preipitation volume inreases.
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The overwhelming majority of modern life aspets, from household

applianes to publi administration, have beome so omplex that the

determinnation of performane riteria by deterministi analysis is vir-

tually impossible. Thus, all sorts of indies and ratings are beoming

more ommon allowing to make deisions quikly where a study would

take years and require signi�ant �nanial and material resoures. The

reation of ratings and indexes is normally based on the separation of

the model parameters into two lasses. The �rst lass inludes param-

eters that failitate the funtioning of the target objet and positively

a�et the proess (p-fators); the seond lass inludes parameters that

© Kudryavtsev A.A., Palionnaya S.I., Titova A.I., 2018
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inhibit and negatively a�et the funtioning (n-fators). Naturally, the

funtioning of the system under investigation mostly depends not on the

expliit values of n- and p-fators, but rather on their ratio. At the

same time, a large disrepany between the values of the fators usually

indiates either exessive osts of ��ghting negative in�uene� or under-

estimated negative impat. Thus, in order to make the system balaned,

it is reasonable to strive to the ratio of the n-fator to the p-fator equal
to unity. However, the statements of the problem exist where the preva-

lene of the p-fator over the n-fator is reasonable to ahieve despite the
osts. For example, in ase of seurity or reliability investigation. In this

situations, the ratio of the negative to the positive fator tends to zero,

and the ratio of the p-fator to the sum of the p- and n-fators and its

loseness to unity should be onsidered instead in order to understand

the loseness to the solution.

Denote by λ and µ respetively the n- and p-fators of the model.
Consider the balane index ρ = λ/µ and the advantage index

π =
µ

µ+ λ
=

1

1 + ρ
.

Examples of the balane and advantage indies are found in all kinds of

areas of knowledge from demography to simulation of emergenies.

Over the ourse of time, n- and p-fators, and hene the bal-

ane/advantage indies, undergo hanges. This is aused by the instabil-

ity of the environment in whih the funtioning takes plae � eonomi

development, the politial system, prodution tehnologies, population

preferenes, et., � hange. For this reason, it makes sense to onsider

not only the instantaneous values of the fators and indies, but also

the orresponding funtions of time: the n-proess λ(t), p-proess µ(t),
balane proess

ρ(t) =
λ(t)

µ(t)

and the proess of advantage

π(t) =
µ(t)

µ(t) + λ(t)
.

The impossibility of a thorough study of the �states of nature�, in

whih the system under investigation operates, and inevitable errors in

measurements are the prerequisites for onsidering fators, and hene in-

dies, as random variables. Furthermore, one must take into aount that
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global hanges in the environment rarely our, therefore, the laws that

a�et the values of the fators an be onsidered unhangeable within

the framework of a partiular model. Hene, the distributions of the

onsidered random variables should be assumed to be given a priori.

The above reasoning leads to the appliation of the Bayesian method

to the balane models.

In the report, a number of implementation examples for the balane

and advantage indies from spei� areas of knowledge are provided. The

analytial results for one-dimensional distributions of balane proesses

for models with a priori gamma-type distributions are presented.
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A retrial queuing system with a single server is investigated in this

paper. The server is subjet to random breakdowns. The results are pro-

vided by the help of reursive numerial alulations (B�erzes and Sztrik

and T�oth and Nazarov [1℄, Kim [2℄, Wang and Zhao and Zhang [5℄). The

number of soures of alls is �nite and ollision (Nazarov and Kvah and

Yampolsky [3℄, T�oth and B�erzes and Sztrik and Kvah [4℄) an take

plae. The failure of server blok the system's operation therefore the

arriving ustomers an not enter the system, meaning that those alls are

lost. All the random variables inluded in the model onstrution are as-

sumed to be generally distributed and independent of eah other. From

the Kolmogorov system equations a reursive algorithm has been derived

for non-bloking ase ([3℄). As the novelty of this analysis, this algorithm

is modi�ed to the bloking ase, as well. Various �gures represent the

impat of bloking phenomenon on the main performane measures like

mean and variane of number of ustomers in the system, mean and

variane of response time, mean and variane of time a ustomer spent

in servie, mean and variane of sojourn time in the orbit.

© Kuki A., B�erzes T., T�oth

�
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Sine the end of the XX-th entury the study of random graphs with

node degrees being independent identially distributed random variables

following a ommon power-law distribution has gained steam. The rea-

son was quite obvious: observations of real-world omplex ommunia-

tion networks showed (see e.g. Faloutsos et. [1℄, Hofstad [2℄) that these

© Leri M.M., 2018
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models ould be used for their desription. However, with networks'

growth it has beome obvious that it is not enough to know the node

degree distribution and its parameters to get a good-�t model of a real

network, but there are some numerial harateristis that have to �t in

also.

In this work we onsider on�guration graphs introdued by Bol-

lobas [3℄ with the following power-law node degree distribution (see Re-

ittu and Norros [4℄)

P{ξ = k} = k−τ − (k + 1)−τ , τ > 1, k = 1, 2, . . . ,

where ξ is a random variable equal to the degree of an arbitrary node.

Node degrees form inident semiedges numbered in an arbitrary order

and the graph is onstruted by an equiprobable joining of all semiedges

one to another to form links. Obviously, suh onstrution supposes the

sum of node degrees to be even, so if otherwise one semiedge is added to

an equiprobably hosen node to form a laking onnetion. Con�guration

model allows loops and multiple links in its graph.

Reent works (see e.g. Biaoni and Barabasi [5℄, Pavlov [6℄) that the

node degree distribution an not only hange with the growth of a net-

work size but even be random, whih means that the graph is onstruted

in a so alled random environment. Thus, in our work we onsider two

types of on�guration graphs. The �rst one with the parameter τ of

the distribution (1) being a �xed value and the seond one with the

values of τ being determined separately for eah node from either uni-

form or trunated normal distribution on some prede�ned interval (a, b),
1 < a < b < ∞, so we an say that the graph is formed in random

environment.

Along with the node degree distribution desription of real-world

omplex networks inludes studying various numerial harateristis

that show both loal and global network properties. The best known

among them are global and loal lustering oe�ients and assortativity

oe�ient.

Assortativity oe�ient A is used for estimating orrelation between

the degrees of inident nodes, wherefore it is proposed (see e.g. New-

man [7℄) to use Pearson orrelation oe�ient for this purpose. Obvi-

ously, if nodes with high degrees onnet mostly to nodes with also high

degrees, then the assortativity oe�ient A will be positive and the net-

work is alled assortative, otherwise the oe�ient will be negative and

a orresponding network is alled disassortative.
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For estimating the degree of graph lusterization we used the fol-

lowing global CG and network average CL lustering oe�ients (see

Newman [7℄):

CG =
3× number of graph triangles

number of onneted triples of nodes

,

CL =
1

N

N∑

i=1

Ci,

where

Ci =
number of triangles onneted to node i

number of triples entered on node i

,

where a "triple" means a single node onneted by links to two others, Ci

is loal lustering oe�ient (Newman [7℄). Sine on�guration graphs

may have loops and multiple links, in alulating lustering oe�ients

loops are not ounted and multiple links are onsidered as one.

The results were obtained by simulation tehnique. We onsidered

on�guration graphs with the number of nodes 100 < N < 10000 in two
ases of the node degree distribution: with �xed values of 1.01 ≤ τ ≤ 2.5
and random environment, when τ was either uniformly distributed on a
prede�ned interval [a, b] or was a random variable following a trunated

normal distribution on the same interval (a, b) with the expetation of

ξ at eah interval (a, b) being de�ned as the middle value (a+ b)/2 and
the standard deviation σ = (b−a)/6 in aordane with the three-sigma
rule. The onsidered intervals (a, b) were the following: (1, 2), whih
orresponds to a well-known property of ommuniation networks (Hof-

stad [2℄), (2, 3), onneted with forest �re modeling (Leri and Pavlov[8℄)
and (1, 3) as a generalization of the �rst two. Based on the obtained

results we derived regression dependenies of oe�ients A, CG and CL

on the graph size N and the parameter of the node degree distribution

τ in the �rst onsidered ase, when τ was �xed. The general form of the

obtained equations looked like the following (here and in what follows

CF denotes either of the three onsidered oe�ients):

CF = c ·N−d+h/τ ,

where the oe�ient c was negative in the relation for assortativity o-

e�ient A, whih means that on�guration graphs are to be used for

modeling only disassortative networks, and for lustering oe�ients CG

and CL c was positive. The oe�ients d and h were always positive.

Determination oe�ients for all models were greater than 0.95.
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In the ase of random environment we also obtained regression rela-

tions of the oe�ients A, CG and CL on the graph size N . The general

form of these equations was derived to be as follows:

CF = p ·N−q,

where the oe�ient p was negative in the relation for the oe�ient A
and positive for CG and CL. Coe�ient q was positive in all ases and

R2 ≥ 0.97 for all models.
We believe that these results will be helpful in onstruting models of

spei� networks in the form of on�guration graphs with the power-law

node degree distribution (1) by hoosing the best �tting values of the

parameter τ or by hoosing the distribution of a random τ �tting the real
values of the assortativity and lustering oe�ients of these networks.

Moreover, we ompared the values of A, CG and CL alulated for real-

world networks and given by Newman [7℄ with the same oe�ients for

the orresponding on�guration graphs of the same size obtained from

our equations. The results showed that for modeling of the Internet

on AS-level on�guration graphs with 1.02 ≤ τ ≤ 1.17 give the best �t,
while for modeling of some soial networks the value of τ must be greater
than 2.

The study was supported by the Russian Foundation for Basi Re-

searh, grant 16-01-00005. The researh was arried out using the equip-

ment of the Core Faility of the Karelian Researh Centre of the Russian

Aademy of Sienes.
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Let X1, X2, . . . , Xn be independent random variables on a om-

mon probability spae (Ω,F ,P) with EXk = 0, EX2
k = σ2

k, and

B2
n =

∑n
k=1 σ

2
k > 0. Denote

µk(z) = EX3
k1(|Xk| < z), λk(z) = z · EX2

k1(|Xk| > z), z > 0,

Fn(x) = P(X1 +X2 + . . .+Xn < xBn), ∆n = sup
x∈R

|Fn(x)− Φ(x)|,

where Φ stands for the standard normal distribution funtion. Let G
denote the set of all nondereasing funtions g : R+ → R suh that

x/g(x) is nondereasing for x > 0. We prove that for every ε ∈ (0;+∞],

γ > 0 there exist onstants C(ε, γ), C̃(ε, γ) depending only on ε, γ suh
that

∆n ≤ C1(ε, γ)

B2
ng(Bn)

· Ln,1(g, ε, γ), ∆n ≤ C2(ε, γ)

B2
ng(Bn)

· Ln,2(g, ε, γ),

∀g ∈ G,

where

Ln,1(g, ε, γ) = sup
0<z<εBn

g(z)

z

(∣∣∣∣∣

n∑

k=1

µk(z)

∣∣∣∣∣+
n∑

k=1

λk(z)

)
,

Ln,2(g, ε, γ) =
g(εBn)

εBn

∣∣∣∣∣

n∑

k=1

µk(εBn)

∣∣∣∣∣ + sup
0<z<εBn

g(z)

z

n∑

k=1

λk(z).
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The obtained inequalities improve and generalize those in [1�4℄ and, a-

ording to Zolotarev's [5℄ lassi�ation, an be alled natural onvergene

rate estimates in the Lindeberg�Feller theorem.

Let X1, X2, . . . , Xn have the same distribution funtion F (x). For
i = 1, 2 denote asymptotially exat onstants, whih are lower bounds

for Ci(ε, γ):

CAB,i(g, ε, γ) = sup
F

lim sup
n→∞

∆n(F )

Ln,i(F, g, ε, γ)
,

CAE,i(g, ε, γ) = lim sup
n→∞

sup
F

∆n(F )

Ln,i(F, g, ε, γ)
,

CAE,i(g, ε, γ) = lim sup
ℓ→0

sup
n,F :Ln,i(F,g,ε,γ)=ℓ

∆n(F )

ℓ
,

CAE,i(g, ε, γ) = lim sup
ℓ→0

lim sup
n→∞

sup
F :Ln,i(F,g,ε,γ)=ℓ

∆n(F )

ℓ
,

C∗AE,i(g, ε, γ) = sup
ℓ>0

lim sup
n→∞

sup
F :Ln,i(F,g,ε,γ)=ℓ

∆n(F )

ℓ
,

where g ∈ G, ε ≤ 1, γ > 0, i = 1, 2. We provide lower bounds for eah

of the above asymptotially exat onstants.
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Abstrat. Random e�ets of frailty omponents are used in survival

models to enter the unknown risk fators. But in many ases, there

may be a spatial orrelation between the survival times. In this ase,

a Gaussian random �eld is usually onsidered for random e�ets while

entering this omponent to the model onvert survival model to spatial

survival model. But the onsideration of a Gaussian random �eld for

spatial random e�ets sometimes not orrespond to reality. In this paper,

by onsidering a losed skew Gaussian random �eld for random e�ets

we propose a new lass of spatial survival models. In a simulation study,

we will show that the deviation from the Gaussian assumption random

e�ets have an undesirable e�et on parameters estimation in the spatial

survival model, while the use of the losed skew Gaussian random e�ets

provides more aurate parameters estimates. Finally, the introdued

model is applied to explore the pattern of infeting Cerosporiose in

olive trees.

Keyword Frailty, Spatial Survival Data, Closed Skew Gaussian Ran-

dom Field, Cerosporiose.

Introdution. Survival analysis has a long history in medial studies

and reliability in engineering Cox and Oakes [1℄. It is usually assumed

in survival models that the failure times of the subjets are independent.

while in many ases this assumption is not realisti in some appliations

and the failure times are spatially orrelated . Many Sienti� researher

Biggeri et al [2℄ and Ramsay et al [3℄ have shown that in the presene

of spatial orrelation in survival data and ignoring it in modeling and

analyzing survival data an lead to false and misleading results. Random

e�ets are usually a latent omponent of the survival data, that an be

ahieved by reognizing the spatial orrelation and onsidering through

a spatial survival model to yield results onsistent with reality. The

analysis of survival models with spatial random e�ets has a history of

© Motarjem K., Mohammadzadeh M., 2018
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Fig. 1: The loations of trees in the garden and time disease, irle areas are

proportional to observations and pluses represent ensored data

less than two deades. Most spatial survival models are introdued by

researhers are suitable for lattie data that the spatial orrelation exists

between the areas ontaining survival data. But in geostatistial ases,

the analysis of survival models are ompliated in parameter estimation.

Motarjem et al [4℄ introdued a spatial survival model for analysing

geostatistial survival data, where a Gaussian random �eld is used for

onsidering the spatial random e�ets. However, due to the existene

of skewness in survival data, the Gaussian assumption of random e�ets

may not be realisti. In this paper, by onsidering a losed skew Gaussian

random �eld for spatial random e�et, a new model for skew spatial

random e�ets is proposed, the e�et of this deviation on the estimation

of model parameters is investigated.

Appliation. In this study, Cerorpiose disease infestation in a gar-

den with an area of 5000 m2
in whih 173 olive planets exist, is studied

daily for two months. Age (in years), type (two type) and height (in

meter) of eah olive tree onsidered as ovariates. In the ase of having

tree disease, the disease time noted. By the end of the study, 85 trees

have been infeted and the others were right ensored. Consequently, we

have 51 perent right ensoring. The loation of trees showed in Fig. 1

while the infeted trees demonstrated by irles and the others by plus

signs (+). The area of eah irle relates to infeting time in a way that

smaller irles indiate earlier infetion and larger irles depit later

infetion.
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Table 1: Parameter estimates of Cox and Frailty models �tted to olivegrown-

ing data

Proportional hazards Frailty

Par. Est. SE Est. SE

β1 -0.381 0.129 -0.600 0.192

β2 -0.662 0.156 -1.026 0.221

β3 0.351 0.119 0.477 0.181

ln(L̂) -396.667 -340.046

AIC 799.334 682.092

Table 2: Parameter estimates of proposed model with di�erent ovariane

funtions

Exponential Gaussian Spherial

Par. Est. SE Est. SE Est. SE

β1 -0.592 0.014 -0.573 0.017 -0.503 0.021

β2 -1.402 0.059 -1.203 0.075 -1.011 0.089

β3 0.624 0.073 0.602 0.082 0.589 0.102

a 0.999 0.083 0.973 0.098 1.121 0.108

σ2
0.307 0.039 0.296 0.052 0.213 0.083

δ 0.512 0.084 0.419 0.102 0.408 0.106

ln(L̂) -293.084 -301.209 -304.284

AIC 598.168 614.418 620.568
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The usefulness of onept of loal asymptoti normality (LAN) of a

family

of probability distributions in problems of theory of asymptoti esti-

mation and hypothesis testing has been demonstrated in a number of

papers. LAN is a property of a sequene of statistial models, whih

allows this sequene to be asymptotially approximated by a normal lo-

ation model, after a resaling of the parameter. The notation of LAN

was introdued by Le Cam [1℄ in the ase of independent and identially

distributed sampling from a regular parametri model. Several exten-

sions of property of LAN for dependent and nonidentially distributed

sampling shemes has been established in statistial literature. In the

papers [2-4℄ the onept of LAN extended in the ompeting risks model

(CRM) under random ensoring of observations from the right, both

sides and by nonobservation intervals. In this paper we disuss property

of LAN in the CRM by progressively hybrid ensored data.

In the CRM our interest is foused on random variable (r.v.) X
with values from measurable spae (X ,B) and pairwise disjoint events

(
A(1), ..., A(k)

)
, where for a �xed k, P (

k⋃
i=1

A(i)) = 1. In survival anal-

ysis X means survival time of objet (individual, physial system)

exposed to k ompeting risks and failing in ase one of the events

A(i), i = 1, k. The pairs (X,A(i)), i = 1, k, denote the time and

reason the objet fails. Let

{
(Xj , A

(1)
j , ..., A

(k)
j ), j ≥ 1

}
be indepen-

dent opies of ensemble (X ;A(1), ..., A(k)) during the experiments un-

der homogenous onditions. Let δ
(i)
j = I(A

(i)
j ) is a indiator of event

A
(i)
j . Every vetor ζj = (Xj , δ

(1)
j , ..., δ

(k)
j ) indues a statistial model

with sample the spae Y = X × {0, 1}(k) and σ - algebra C of sets

of the from B × D1 × ... × Dk, where B ∈ B and Di ⊂ {0, 1},
i = 1, k. Suppose that distribution of the vetor ζj on (Y, C) de-

pends on an parameter θ = (θ1, ..., θs) ∈ Θ: Qθ(x, y
(1), ..., y(k)) =

© Nurmukhamedova N.S., 2018
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Pθ(X < x, δ(1) = y(1), ..., δ(k) = y(k)), x ∈ R1, y(i) ∈ {0, 1}. Let

H(x; θ) = Pθ(X < x), H(i)(x; θ) = Pθ(X < x, δ(i) = 1), i = 1, k.
Obvious that H(1)(x; θ) + ... + H(k)(x; θ) = H(x; θ).Let H(i)(x; θ) are

absolutely ontinuous, h(i)(x; θ) = ∂H(i)(x;θ)
∂x , i = 1, k and h(x; θ) =

h(1)(x; θ) + ... + h(k)(x; θ). Let X1n < X2n < ... < Xnn are order

statistis of subsample {X1, ..., Xn} and {δ(1)jn , ..., δ
(k)
jn , j = 1, n} indiator

funtions in sample ζ(n) = (ζ1, . . . , ζn) orresponding to order statistis

{Xjn, j = 1, n}. Denote , where ζjn = (Xjn, δ
(1)
jn , ..., δ

(k)
jn ). Throughout

(Y(n),U (n), Q
(n)
θ ) denote the sequene of statistial experiments, indued

by (Z(1), ..., Z(n)). Now we onsider the experimental situation when the

ompeting risks data is random hybrid ensored from the right. A hy-

brid ensoring, whih is the mixture of type I and II ensoring, an be

used to save resoures. If the experiment stops either at a �xed time

T ∈ R, the experiment is alled type I (or (n, T )) ensoring model or

is ontinues until r(0 < r < n) failures our, the experiment is alled
type II (or (n, r)) ensoring model. If the experiment is ontinues until
either r failures our or test duration T is reahed, whihever omes

�rst, we all the experiment a hybrid (or (n, r, T )) ensoring model. In
onsidered ompeting risks situation the hybrid ensored CRM we de-

note as (n, r, T )k. In (n, r, T )k-model ompeting risks data is ensored

from the right by r.v. Trn = min {T,Xrn}. In (n, r, T )k-model a number
τ of observed data is r.v.:

τ =

{
sup{m : Xmn ≤ T, m ≤ r}, if X1n ≤ T,

0, otherwise.

Thus the observed data

(
Z(τ), τ

)
have a joint density funtion

pn

(
Z(τ), θ

)
=

n!

(n− τ)!

τ∏

l=1

k∏

i=1

{[
h(i)(xin; θ)

]y(i)
l n

}
[1−H(trn; θ)]

n−τ×

×I (x1n < ... < xrn, τ ≤ r) ,

where trn = min
{
xrn, T

}
.

Let

l(τ)n (u) =
pn(Z

(τ); θn)

pn(Z(τ); θ)

is a likelihood ratio statistis, where θn = θ + un−1/2 ∈ Θ and θ, u
held �xed. Under ertain regularity onditions on underlying distribu-

tion family and on stopping time τ the LAN property of experiment is
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established:

l(τ)n (u) = exp
{
u (I(θ))1/2 ∆(τ)

n − u2

2
I(θ) +Rn(u)

}
,

where Rn(u)
Qθ→ 0, L(∆(τ)

n /Qθ) → L(ξ), n → ∞, ξ
D
=N(0, 1) and I(θ) is

Fisher information.
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Some probabilisti features

of the iterated Brownian motion
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1
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We give a review of the basi fats about the iterated Brownian

motion

µ1
µ2
I(t) = Bµ1

1 (|Bµ2

2 (t)|) where Bµj

j , j = 1, 2 are two independent

Brownian motions with drift µj . We study the last zero rossing of

µ1
µ2
I(t)

and for this purpose we derive the last zero-rossing distribution of the

drifted Brownian motion.

We derive also the joint distribution of the last zero rossing before

t and of the �rst passage time through the zero level of a Brownian

motion with drift µ after t. All these results permit us to derive expliit

© Orsingher E., 2018
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formulas for

I
µT0 = sup{s < max0≤z≤t |B2(z)| : Bµ

1 (s) = 0}. Also the

iterated zero-rossing

µ1T 0,µ2T 0,t is analyzed and extended to the ase

where the level of nesting is arbitrary.

The iterated Brownian motion has been examined from many view

points inluding its onnetion with frational equations and some prob-

abilisti properties as the iterated logarithm law.
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New sheme for alulation of senior moment

funtions for the state vetor of linear stohasti

delay di�erential system exited by additive

and multipliative white noises

I. E. Poloskov

1

1
Perm State University, Perm, Russia, Igor.Poloskov�gmail.om

Current theoretial studies aimed at studying e�ets of time-lags on

the state and behavior of various systems, began in the middle of the

twentieth entury [1, 2℄. But they began to develop espeially inten-

sively only reently that is related to pratial needs. Among the �rst

appliations of suh studies were methods of solving problems of on-

trol, and then tasks of biology, mehanis, physis, hemistry, mediine,

eonomis, atomi energy, information theory et.

Mathematial models for desribing phenomena in these areas are

onstruted in the form of funtional-di�erential equations (FDEs) (see

[3, 4℄ et al.) and various speial forms of FDEs suh as retarded ordinary

and partial di�erential equations [5�7℄ inluding delay and neutral di�er-

ential equations (DDEs, NDEs) as well as integro-di�erential equations

(IDEs) [8�11℄.

At present, a onsiderable interest is being paid to stohasti FDEs

(SFDEs) of di�erent types [12�15℄. As it happened earlier for determin-

isti systems, the development of researh methods for suh equations

beame important for theory and pratie. Analysis of SFDEs auses sig-

ni�ant di�ulties, sine these SFDEs that arise in many appliations,

© Poloskov I.E., 2018
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an not be solved exatly. Therefore, the atual task is the development

of e�etive both diret, i.e., obtaining realizations of strong solutions,

and indiret, i.e., omputation of statistial harateristis, approximate

analytial and numerial algorithms for analyzing systems of SFDEs.

Now there is a rather wide lass of methods for solving determin-

isti FDEs [16, 17℄. Approximate algorithms of diret numerial inte-

gration of SFDEs. of various types (for example [18�20℄) are based on

these shemes and speial ompound methods for numerial solution of

stohasti ordinary di�erential equations (SODEs) [21�23℄.

But there are some forms of SODEs that don't require a very ompli-

ated sheme to be examined. One of suh the forms is a system of linear

SODEs exited by additive and multipliative white noises. In this ase

deterministi ODEs for the �rst and senior (entral) moment funtions

an be obtained exatly in the losed form, i.e., an ODE for a moment

funtion of a urrent order does not ontain moment funtions of higher

orders. If we now turn to linear stohasti ordinary DDEs (SODDEs)

with the same input �utuations, then we formally will be in a similar

situation with respet to a losure of the equations for the moment fun-

tions as above. The di�erene is in the fat that these equations will be

ODDEs. To obtain ODEs for senior moment funtions without delays,

we apply a modi�ation of our sheme [24�26℄ ombining the lassial

method of steps and extension of the system state spae (MSESP).
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Integral representation of the density of the

frational-stable law

V. V. Saenko
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The harateristi funtion of the frational stable law has the form

q̃(t, α, β, θ) = Eβ(ψ(t, α, θ)), (1)

where Eβ(z) is the Mittag�Le�er funtion

Eβ(z) =

∞∑

n=0

zn

Γ(1 + βn)
, β > 0, z ∈ C,

ψ(t, α, θ) = −|t|α exp{−i(παθ/2) sign t}, and the parameters are varying
within the limits

0 < α 6 2, 0 < β 6 1, |θ| 6 min(1, 2/α− 1).

The inverse Fourier transformation of the harateristi funtion (1)

was arried out for obtaining of the integral representation of the density

of the frational stable law

q(x, α, β, θ) =
1

2π

∞∫

−∞

e−itx q̃(t, α, β, θ) dt.

As a result for the density of the frational stable law the following

theorem is valid

Theorem 1. For any allowed value of the parameters (α, β, θ), suh
as 0 < α/β 6 2, |θ| 6 min(1, 2β/α − 1), the density of the frational

stable law q(x, α, β, θ) has the form

q(x, α, β, θ) =
sin(πβ)

πβ

∞∫

0

y−1/αg(x y−1/α, α/β, θ)

y2 + 2 y cos(πβ) + 1
dy, (2)

β 6= 1, x 6= 0,

q(x, α, 1, θ) = g(x, α, θ), β = 1,

© Saenko V.V., 2018
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where g(x, ν, θ) is the density of the stritly stable law (see Zolotarev [1℄),

g(x, ν, θ) =
ν

π|ν − 1|

π/2∫

−πθ∗/2

exp
{
−|x| ν

ν−1U(ψ, ν, θ∗)
}
U(ψ, ν, θ∗)|x| 1

ν−1 dψ,

ν 6= 1,

g(x, 1, θ) =
cos(πθ/2)

π(x2 − 2x sin(πθ/2) + 1)
, g(x, 1,±1) = δ(x± 1).

Here θ∗ = θ signx,

U(ψ, ν, θ) =

(
sin
(
ν
(
ψ + π

2 θ
))

cosψ

) ν
1−ν

cos
(
ψ(ν − 1) + π

2 νθ
)

cosψ
.
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Fig. 1: The densities of the frational stable laws for the values of the param-

eters α = 0.6, β = 0.8, θ = 1 (dotted urve), θ = 0.5 (dashed line),

θ = 0 (solid urve)

The results of alulation of the densities are shown on the Fig. 1.

The urves are densities obtained by Eq. (2) and the dots are results
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obtained by Monte Carlo method. For alulation of the density by

Monte Carlo method the following formula is used

X(α, β, θ) =
Y (α, θ)

(S(β, 1))β/α
,

where random variables Y (α, θ) and S(β, 1) are distributed aording to
laws g(x, α, θ) and g(y, β, 1) respetively.

We an obtain expression for the umulative distribution funtion

Q(x, α, β, θ) using the Theorem 1. As a result the umulative distribu-

tion funtion has the form

Q(x, α, β, θ) =
sin(πβ)

πβ

∞∫

0

G(xy−1/α, α/β, θ)

y2 + 2y cos(πβ) + 1
dy, x > 0,

0 < α/β 6 2, |θ| 6 min(1, 2β/α− 1) and G(x, ν, θ) is umulative distri-
bution funtion of the stritly stable law (Zolotarev [1℄)

G(x, ν, θ) = 1− 1− θ∗

4
(1 + sign(1− ν))

+
sign(1− ν)

π

π/2∫

−πθ∗/2

exp
{
−|x| ν

ν−1U(ψ, ν, θ∗)
}
dψ, ν 6= 1

G(x, 1, θ) =
1

2
+

1

π
arctan

(
x− sin(πθ/2)

cos(πθ/2)

)
.

The ase x < 0 an be obtained from the relation

Q(−x, α, β, θ) = 1−Q(x, α, β,−θ).
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Thresholding rules in the models

with non-Gaussian noise

O. V. Shestakov
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Many modern methods of analyzing and proessing signals and im-

ages are based on the possibility to eonomially represent the funtion

of a useful signal in a ertain basis. For a fairly wide lass of funtions,

this possibility is ahieved with the help of wavelet bases, whih ensure

adaptation to funtions that have di�erent degrees of regularity in dif-

ferent regions. This makes it possible to e�iently separate the noise

from the useful signal and to remove it using simple thresholding proe-

dures, that is, zeroing out a part of the wavelet oe�ients, whih are

assumed to ontain mostly noise. The lassial model of observations

assumes the presene of white Gaussian noise. In this ase, the proper-

ties of the estimates obtained by threshold proessing are well studied,

and the order of the mean-square risk for various lasses of funtions is

alulated [1℄. Some results have also been obtained that desribe the

asymptoti behavior of the mean-square risk estimate, onstruted from

noisy observations [2℄.

This report onsiders a wider lass of possible noise distributions, in

partiular, distributions having heavier tails than Gaussian distribution.

For this lass, the values of the universal threshold in the methods of

hard and soft thresholding are alulated, its asymptoti properties are

studied and it is shown that the order of the mean-square risk is lose

to the minimum up to the logarithm of the number of observations in

a power depending on the distribution parameters [3℄. Also within the

framework of the model under onsideration, the strong onsisteny and

asymptoti normality of the mean-square risk estimate for the universal

threshold proessing are proved under the assumption that the signal

funtion belongs to the Lipshitz lass.

Aknowledgements. This researh is partly supported by the Rus-

sian Foundation for Basi Researh (projet No. 16�07�00736).
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Robust minimax estimation of loation and least

favorable distributions under asymmetry
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Russia, gshevlyakov�yahoo.om,Georgy.Shevlyakov�phmf.spbstu.ru

This talk is partially a review of basi former results on the applia-

tion of Huber's minimax approah to robust estimation of loation with

the orresponding least favorable (informative) distributions both in the

univariate and multivariate ases [1-3℄, and partially it is a presentation

of several reent results and novel problem settings on these issues with

a ertain aent on the asymmetry of distribution models.
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Integral transforms of harateristi funtions and

their properties
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We propose a natural generalization of the zero bias transformation,

the term introdued by [2℄, of a probability distribution with non-zero

mean in terms of harateristi funtions oming bak to ideas of Lukas

in the seond edition of his elebrated monograph [4℄. We disuss this

generalization with the other ones alled 'non-zero biased' and 'gener-

alized zero biased' [1℄. We also introdue other integral transforma-

tions of probability distributions, in partiular, generalizing the station-

ary renewal distribution (equilibrium, or integrated tail distribution) and

© Shevlyakov G.L., 2018
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symmetri equilibrium distribution and study their properties inluding

onstrution of optimal estimates for the minimal L1-bounds between

the original distribution and its transformation. As orollary and using

results of [5℄ we prove new and sharp moment-type estimates for har-

ateristi funtions and their derivatives improving, in partiular, some

results of [6℄ and [7℄.
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Non-arsine law for random walk onditioned to

reah a high level

A. V. Shklyaev

1

1
Mosow State University, Mosow, Russia, ashklyaev�meh.math.msu.su

Let Xi be i.i.d. random variables with EXi = 0, DXi <∞. Consider

the random walk Sn = X1 + ... +Xn. Let Mn = max(Si, i ≤ n) be its
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maximum, let τM = min{i : Si = Mn} be the �rst moment the random
walks reahes its maximum.

Well-known arsine law for τM states that

P
(τM
n

≤ x
)
→ 2

π
arcsin

√
x, x ∈ [0, 1], n→ ∞,

or in loal form that

P (τM = m) ∼ 1

πn
√

m
n

(
1− m

n

) , n→ ∞,

uniformly by m/n ∈ [ε, 1− ε] for any ε > 0.
Let introdue several lasses of random variables.

A random variable X is alled arithmeti if P(X ∈ αZ) = 1 for some

α > 0. The maximal possible α is alled the arithmeti step of X .

A random variable X is alled lattie if P(X ∈ β + αZ) = 1 for some

α > 0, β. The maximal possible α is alled the lattie step of X .

A random variable X is alled strongly arithmeti if X is arithmeti and

its arithmeti step is equal to its lattie step.

For example, if P(X = 1) = P(X = −1) = 1/2, then X is arithmeti,

its arithmeti step is equal to 1, its lattie step is equal to 2, therefore

it's not a strongly arithmeti random variable.

In the sequel we onsider strongly arithmeti or non-lattie random

variables X . Without loss of generality, further on below we suppose

that the arithmeti step of X is equal to 1.
Consider the following generalization of the previous problem: to �nd

the asymptotis of probabilities P(τM = m|Mn = k), P(τM ≥ x|Mn =
k) as m, k, n ∈ N, n, k, m, x→ ∞ in strongly arithmeti ase and

P(τM = m|Mn ∈ [y, y +∆n)), P(τM ≥ x|Mn ∈ [y, y +∆n))

as n,m ∈ Z, y ∈ R+
, n,m, y, x → ∞ in non-lattie ase, where ∆n is

some sequene, tending to 0 as n→ ∞.

In non-lattie ase we use integro-loal form of limit theorems, intro-

dued by Stone in [1℄.

We onsider three ases: standard deviations (k, y ∈ [a
√
n, b

√
n] for

some 0 < a < b), large deviations (k, y ∈ [an, bn] for some 0 < a < b)
and moderate deviations (k, y ∈ [an, bn], an/n

1/2+δ → ∞, bn/n
1−δ → 0

for some δ > 0). For simpliity, we state Theorems 1-5 only for strongly
arithmeti ase, in non-lattie ase the results are similar.

1) Standard deviations.
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Theorem 1. Let Xi be strongly arithmeti random variables with

EXi = 0, DXi <∞. Then

P(τM = l|Mn = k) ∼ 1

n
g1

(
k

σ
√
n
,
l

n

)
, n→ ∞,

uniformly by k, l ∈ Z, l/n ∈ [a, b], k ∈ [c
√
n, d

√
n] for any 0 < a < b < 1,

0 < c < d, where

g1(x, y) =
x√

2πy3(1− y)
exp

(
−x

2(1− y)

2y

)
.

Theorem 2. Let Xi be strongly arithmeti random variables with

EXi = 0, DXi <∞. Then

P(τM ≤ xn|Mn = kn) →
∫ x

0

g1 (s, t)dt, x ∈ [0, 1], n→ ∞,

uniformly by kn ∈ Z, kn/(σ
√
n) → s > 0.

Theorem 1 is proved by the use of Sparre�Andersen identity and

results of Caravenna (see [2℄). Theorem 2 is a orollary of Theorem 1.

2) Large devations.

Let X be i.i.d. r.v. with EXi = 0 and suppose that R(h) = EehX <
∞ for h ∈ [0, h+). A random variable X(h)

is alled onjugate to X with

parameter h if

P(X(h) ≤ x) = R(h)−1
∫ x

−∞

ehtP(X ∈ dt).

Denote by S
(h)
n the random walk with i.i.d. steps X

(h)
i .

It's easy to see that m(h) = EX(h)
exists for any h ∈ [0, h+). More-

over, m(h) is stritly inreasing on [0, h+). Let m+ = limh→h+ m(h).
Theorem 3. Let Xi be strongly arithmeti random variables with

EXi = 0, satifying EehX1 <∞, h ∈ [0, h+). Then

P(τM = n− l|Mn = k) ∼ g2

(
k

n
, l

)
, n→ ∞,

uniformly by l ∈ Z, l ≤ a, k/n ∈ [c, d] for any a > 0, 0 < c < d < m+
,

where

g2(x, l) =
P
(
S
(hx)
i > 0, i ≤ l

)
R(hx)

−l

∑∞
j=0 P

(
S
(hx)
i > 0, i ≤ j

)
R(hx)−j

.
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Theorem 3 is proved by the use of loal version of large deviation

theorem for Mn, similar to results of Shklyaev (see [3℄) and Kozlov (see

[4℄).

3) Moderate deviations.

Theorem 4. Let Xi be strongly arithmeti random variables with

EXi = 0, satifying EehX1 <∞ for some h > 0. Then

P(τM = n− l|Mn = k) ∼ k2

σ2n2
g3

(
lk2

n2σ2

)
, n→ ∞,

uniformly by n1/2+δ < k < n1−δ
, lk2/n2 ∈ [δ,M ] for any δ,M > 0,

where

g3(x) =
1√
2πx

e−x/2

is a probability density funtion of χ2
1 distribution.

Theorem 5. Suppose Xi satisfy the assumptions of Theorem 4.

Then for any α ∈ (0.5, 1)

P

(
n− τM
n2−2α

≤ x

∣∣∣∣Mn = kn

)
→
∫ x/s

0

g3(t)dt, n→ ∞,

uniformly by kn/(σn
α) → s > 0.

Theorem 4 is based on loal large deviation theorem for random

walk (see [5℄, Chapter 9) and Sparre-Andersen identity. Theorem 5 is a

orrolary of Theorem 4.
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One of the many unusual phenomena experimentally disovered dur-

ing landings of spaeraft on the Moon is the existene of dusty plasma

louds, whih �ll a layer with a thikness of several tens of kilometers

above Moon surfae. These louds onsist of harged dust grains of re-

golith, whih overs the entire lunar surfae with a layer whose thikness

reahes several meters in lunar seas [1, 2℄. Samples of lunar regolith were

delivered to Earth by spaeraft, and its struture was well studied. Re-

golith is a mixture of powders of di�erent oxides (aluminum oxide, silion

oxide, iron oxide, et) with a mean grain radius of 70 − 100 µm, and a

large number of partiles with the radius of the order of one millimeter.

The regolith partile radius distribution is a power-series [3℄. The dusty

plasma loud density above the lunar surfae and its altitude distribution

were not spei�ally studied during the XX entury Moon exploration

programmes. However, observations showed that under lunar onditions,

harged partiles of regolith have inreased adhesive properties that limit

the use of most spaeraft systems on lunar surfae [4℄. This is why pro-

dution of harged dust grain �ows in laboratory onditions is intensively

studied in order to test the omponents of future lunar tehnology [5℄.

In these experiments, the parameters of grain distributions over al-

titude, size and veloity an only be obtained from di�erent (plasma)

models. However, the modern models, whih take into aount di�er-

ent physial proesses, suh as, e.g., the in�uene of the solar wind,

© Skvortsova N.N., Maiorov S.A., Malakhov D.V., Stepakhin V.D.,
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the photoionization, the shok waves, an only desribe the asension of

miron-sized partiles to altitudes of about one meter [6℄.

It is known that the Moon is onstantly bombarded by meteorites.

The impat of even a small-size meteorite produes enough energy to

melt, vaporize and destroy the regolith and release metal and oxygen

oxides [7℄.

Earlier, development of hain plasmahemial reations produing a

dusty plasma loud above the surfae of metal and dieletri powder

mixtures irradiated by powerful gyrotron radiation was experimentally

observed in the Plasma Physis Department of the Prokhorov General

Physis Institute of the Russian Aademy of Sienes [8℄. The absorbed

mirowave power neessary to ignite these hemial proesses was found

to be omparable with the impat of a meteorite with the size of about

ten mirons. This allowed us to ondut a model laboratory experiment

with the goal to reate ensembles of dusty strutures during the devel-

opment of hain exothermi plasmahemial reations initiated by gy-

rotron in metal-dieletri powder mixtures whose omposition imitated

lunar regolith.

In these experiments, we used a mixture of oxide powders with a

perentage omposition the same as in regolith, and with a uniform par-

tile size distribution. Crossing the energy threshold of hain reations

(gyrotron pulse energy of 1 − 3 kJ at pulse duration of 1.5 − 4 ms)

initiates an explosive proess aused by Coulomb repulsion of harged

partiles from regolith surfae into the plasmahemial reator volume.

After the powder mixture explosion, self-propagating hain reations of

high-temperature plasmahemial synthesis were observed, whih on-

tinue for tens of seonds. During this period, the suspended dust grains

levitate several tens of entimeters above the powder mixture surfae,

and produe a levitating loud, whih oupies not only the entire reator

volume, but also raises to a height of up to 1 m above the retor (and

this, in the terrestrial gravitation �eld). The energy produed during

this proess exeeds the initiation energy several hundredfold. Melted

regolith spheroids with diameters of 1−1000 µm are deposited on the side

surfae of the reator above the powder mixture, whose size distribution

is also uniform.

In this work, we note the possible analogy between this proess and

the raise of dusty plasma louds above regolith surfae on the Moon,

whih, similarly, ould be aused by not only physial proesses, but

also hemial hain proesses aused by meteorite impat.

82



XXXV International Seminar on Stability Problems for Stohasti

Models

Referenes

1. J. J. Rennilson, D.R.Criswell, Surveyor observations of Lunar horizon-

glow, Moon 10 (1974) 121.

2. O. E. Berg et al, Let. Notes Phys. 48 (1976) 233.

3. K. P. Florensky et al, Lunar Soil: Properties and Analogues, Vernadsky

Institute of Geohemistry, Mosow, 1975 (in Russian).

4. O.R.Walton, Adhesion of Lunar Dust, NASA CR-2007-214685, 2007.

5. N.D. Semkin, A. SVidmanov, Bulletin of Samara State Airspae Uni-

versity 2 (2013) 164 (in Russian).

6. E.A. Lisin et al, JETP Letters 98 (2014) 664.

7. S. I. Popel et al, JETP Letters 107 (2017) 485.

8. N.N. Skvortsova, D.V.Malakhovad, V.D. Stepakhin et al, Initiation of

dusty strutures in hain reations under the ation of gyrotron radiation

on a mixture of metal and dieletri powders with an open boundary,

JETP Letters 106:4 (2017) 262�267.

Simulation of �nite-soure retrial queueing

systems with ollisions and bloking

�

A. T�oth

1
, T. B�erzes

1
, J. Sztrik

1
, A. Kuki

1

1
University of Debreen, Debreen, Hungary,

toth.adam|berzes.tamas|sztrik.janos|kuki.attila�inf.unideb.hu

This paper investigates a retrial queuing system with a single server,

whih is liable to random breakdowns (B�erzes and Sztrik and T�oth and

Nazarov [1℄, Kim [2℄, Wang and Zhao and Zhang [5℄) by the help of a

simulation program. The number of soures of alls is �nite and ollision

(Nazarov and Kvah and Yampolsky [3℄, T�oth and B�erzes and Sztrik

and Kvah [4℄) an take plae. The failure of server blok the system's

operation therefore the arriving ustomers an not enter the system,

meaning that those alls are lost. All the random variables inluded in

the model onstrution are assumed to be generally distributed and in-

dependent of eah other. The novelty of this analysis is the inspetion

of bloking e�et on the performane measures using di�erent distri-

butions. Various �gures represent the impat of di�erent distributions

on the main performane measures like mean and variane of number

of ustomers in the system, mean and variane of response time, mean

and variane of time a ustomer spent in servie, mean and variane of

sojourn time in the orbit.
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One of the important problems in statistis is the problem of testing

the equality of the distributions of several populations. A typial exam-

ple, often referred to, is the omparison of several drugs with a plaebo,

where the hypothesis of no drug e�et is tested versus the alternative

of at least one e�et. There is a number of tests for this problem es-

peially for the two-sample problem. Suh proedures are usually not

distribution free, the distribution of the test statisti depends on the dis-

tributions of the samples, therefore ritial points for the distribution of

© Ushakov N.G., Ushakov V.G., 2018
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the test statisti under the null hypothesis of homogeneity are obtained

using a bootstrap-type resampling sheme, see, for example, Allen [1℄.

A lass of tests for testing the homogeneity of two populations is

proposed by Meintanis [2℄. The tests are based on the empirial hara-

teristi funtion, and the test proedure is based on resampling from the

permutation distribution of the test statisti. The test statisti is the

weighted L2
distane between empirial harateristi funtions. Weight

funtions of two types are used � a normal density and a Laplae density.

In this work, we propose tests of homogeneity of two or more distribu-

tions. The tests are based on haraterizations of homogeneity obtained

by Ushakov [3℄ and Ushakov and Ushakov [4℄. Sine the distribution of

the test statistis depends on the distributions of populations, we also

use the bootstrap-type resampling tehnique, mentioned above.
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The following problem often arises in appliations. Suppose that

there are a number of small independent samples suh that in eah small

sample observations are independent and identially distributed while

from sample to sample they have di�erent values of loation parameter.

First this problem was posed by A.N.Kolmogorov, see Zinger [1℄. In

© Ushakova A.P., Ushakov N.G., 2018
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this situation it is neessary to use statistis whih do not depent on the

loation parameter. Reonstrution of the type of initial distribution

from distribution of suh a statisti is an atual problem, in partiular

for goodness of �t testing.

The stability of the reonstrution has been studied by a number of

authors, see, for example, Prokhorov [2℄, Zinger and Kagan [3℄, Kagan

and Klebanov [4℄. Ushakova [5℄ proved that the upper bound of stability

has the order ǫ1/3L(ǫ), where L(ǫ) is a slowly varying funtion. Here

this estimate is improved.

In what follows we suppose (without loss of generality) that the small

subsamples have size 3, i.e. the minimal neessary size. The main result

is as follows. Let X1, X2, X3 be independent random variables with

ommon distribution funtion F (x − θ) and unit variane, Φ(x) be the
standard normal distribution funtion. Let a = (a1, a2, a3) be a vetor
satisfying the following onditions:

a1 + a2 + a3 = 0, a21 + a22 + a23 = 1.

Denote

X(a) = a1X1 + a2X2 + a3X3,

and let F (a)(x) be the distribution funtion of X(a)
.

Theorem. If

sup
a

∫ ∞

−∞

(1 + |x|)d|F (a) − Φ| ≤ ǫ < 1,

then

sup
x

|F (x− θ)− Φ(x)| ≤ ǫ1/2L(ǫ)

for some θ, where L(ǫ) is a slowly varying funtion.

We also onsider the problem of testing for homogeneity of two sam-

ples in the onsidered ase when the samples onsist of small subsamples.
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At the present time, experiments on plasma heating and on�nement

are arried out on the L-2M stellarator (Prokhorov General Physis In-

stitute of the Russian Aademy of Sienes) using MIG-3 gyrotron om-

plex whih allows us to ahieve reord spei� energy deposition into the

plasma (up to 3 MW/m3) [1℄. The development of this heating omplex

as well as studies of the new pulsed-periodi regime of plasma heating,

during whih the 10-ms-long gyrotron pulse is separated into train of

three 3-ms-long pulses [2℄ inreases the neessity of studying the stabil-

ity of the signals of both maro (temperature, density, energy deposition)

and miro (signal �utuations, turbulene diagnostis) parameters dur-

ing the analysis of experimental data [3, 4℄. Among the latter is the

magneti probe diagnosti of the L-2M stellarator, whih onsists of a

series of up to 9 detetors plaed in di�erent diagnosti ross-setions

and allows us to study the spetral harateristis of di�erent spatial

modes of the low-frequeny plasma turbulene.

© Voronova E.V., Skvortsova N.N., Kholnov Yu.V., Malakhov D.V.,
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In this work, analysis of the signals of magneti probe diagnostis of

the L-2M stellarator in the above regimes is presented, using the semi

automati proessing system that is being developed [5℄.
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It is well-known that the regularly varying funtions of one variable

were introdued by J. Karamata (1930). Namely, positive measurable

funtion f(t), de�ned for t ≥ C ≥ 0 is said to be regularly varying at

in�nity i�, for any λ > 0, there exists a positive and �nite

lim
t→∞

f(λt)

f(t)
= ϕ(λ) (⇒ ϕ(λ) = λ̺).

A number ̺ is alled as the index of regular variation of the funtion

f(t).

© Yakymiv A.L., 2018
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If in the one-dimensional ase, there is in fat one de�nition of regu-

larly varying funtions, then in the multidimensional ase the situation

is signi�antly di�erent. Namely, there are a number of lasses of fun-

tions that generalize this onept. At the same time, eah lass of suh

funtions has (generally speaking), its own appliations.

Multidimensional extensions of regularly varying funtions are de-

�ned by di�erent authors, for instane: Baj�sanski and Karamata

(1969), Yu.Drozhzhinov and B. Zav'yalov (1984, 1986, 1994), L. de

Haan (1985), S.M.Kozlov (1983), A.Nagaev and A. Zaigraev (2003),

M.Meershaert (1986, 2001), I.S.Molhanov (1993), E.Omey (1982,

1989), T.Ostrogorsky (1995, 1997, 1998), A. Stam (1977), S. Resnik

(1986, 2007, 2015), E.Rva�eva (1962), A.Yakymiv (1981, 2003, 2018).

In addition, a number of artiles by di�erent authors ontaine on-

rete results in suh areas of probability theory and it's appliations as

random point proesses, extreme values, the summation theory of ran-

dom vetors, generalized renewal theory, branhing proesses, in�nitely

divisible random vetors, �nane mathematis, risk theory, random per-

mutations and random mappings, random vetors with multiple power

series distribution, growth of preferential attahment networks and oth-

ers. Some referenes one an see in the author's book (2005).

It is less known that J.Karamata, together with B.Baj�sanski (1969)

gave a deep generalization of regularly varying funtions not only to the

multidimensional ase, but also for topologial groups. Namely, on-

tinuous funtions f : G → R+ are onsidered, where G is an arbitrary

topologial group where a �lter U of open onvex sets in G with ount-

able base is given. The �lter U is thought of as G-invariant, that is,
Uh ∈ U and hU ∈ U for any set U ∈ U and any element h ∈ U . A

funtion f is said to be regularly varying with respet to �lter U if the

limit

lim
g→∞

f(gh)

f(g)
= φ(h)

exists for any h ∈ G, where g → ∞ means onvergene with respet to

the �lter. In this paper, a theorem about uniform onvergene is also

proved.

In Ostrogorsky (1995, 1997, 1998), the researh started in Baj�sanski,

Karamata (1969) is ontinued. As the group G, various ones in Rn
are

onsidrered, suh as the hyper-otant, the future light one, arbitrary

homogeneous ones.

In Drozhzhinov and Zav'yalov (1984) and further papers the regu-

larly varying generalized funtions with support on homogeneous ones
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were introdued and studied, see also Vladimirov, Drozhzhinov and

Zav'yalov's book (1986).

In the Omey's dotor's dissertation (1982) and his book (1989), mea-

surable funtions : R2
+ → R+ are studied suh that the limit

lim
t→∞

f(r(t)x, s(t)y)

f(r(t), s(t))
= λ(x, y)

exists for some auxiliary funtions r, s : R+ → R+, r(t) → ∞, s(t) → ∞
as t→ ∞, some positive funtion λ(x, y) and for all x, y > 0. Using this
de�nition, E.Omey obtained some results in generalized renewal theory,

extreme value theory and for domains of attration of partial sums of

i.i.d. random vetors.

In Meershaert (1986, 1988), funtions f(t) of one variable t are on-
sidered whose values are non-singular linear operators from Rk

, and the

idea of regular variation is extended to this ase. In Meershaert and

She�er (2001), the limit distributions for sums of i.i.d. random vetors

with operator normalization were obtained with a number of applia-

tions, with helping of suh notion.

In I.S.Molhanov (1993), regularly varying funtions f(x) de�ned in

some m-dimensional one are introdued whose values are losed (om-

pat) sets in Rd
. Further, the limit behaviour of suh random sets were

investigated.

Aording to S. Resnik (1986), a random vetor X taking values

in Rn
is said to be regularly varying at in�nity with index α ≥ 0 and

spetral (probability) distribution Ps on the unit sphere Sn−1 ⊂ Rn
if

there exist positive c and σk, k ∈ N , suh that, as k → ∞,

k P{σ−1k X ∈ A(r, B)} → cr−αPs(B)

for all sets B ⊂ Sn−1
of ontinuity of the limiting measure Ps and r > 0,

where

A(r, B) = {x : x ∈ Rn, |x| > r, x/|x| ∈ B}.
In Basrak, Davis, Mikosh (2002), it is shown that if a random vetor

X regularly varies at in�nity with index α > 0, then for any x ∈ Rn
and

some slowly varying at in�nity funtion L(t) there exists the limit

lim
t→∞

P{(x,X) > t}
t−αL(t)

= ω(x),

and there exists x0 6= 0 suh that ω(x0) > 0. It is also shown that for

non-integer α > 0 the orresponding onverse assertion is true, while
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the limiting measure Ps is uniquely determined by the funtion ω(x). A
ounterexample is given for α = 2.

In A.Nagaev and A.

�

Zaigraev (2003), a funtion f(x), x ∈ Rn
, is said

to be (β, λ) regularly varying if, as |x| → ∞,

sup
ex∈Eλ

∣∣∣∣
f(x)

rβ(|x|)
− λ(ex)

∣∣∣∣ = o(1),

where ex = x/|x|, rβ(t) regularly varies as t→ ∞ with

Eλ = {a ∈ Sn−1 : λ(a) > 0}.

In Resnik (2007, 2008), some lasses of measures and funtions are

onsidered. In partiular, they allow to obtain the next asymptotis:

tP{(X/a(t) ≥ x, Y/b(t) ≥ y)} → µ0(x, y) ≡

≡ µ([x,∞]× [y,∞]), ∀x, y > 0,

where r.v. X and Y have appliations and onrete interpretation in

preferential attahment networks, see Resnik et al (2015, 2016). The

authors of last two papers say that that the regular variation is nonstan-

dard, if a(t) and b(t) have di�erent order at in�nity.
Let U = {Uk, k ∈ I ⊆ [0,∞)} stand for an arbitrary family of linear

operators in Rn
whih leave invariant the one Γ ⊆ Rn

:

UkΓ = Γ ∀k ∈ I.

We assume that ∞ is a limit point of the set I. Aording to Yakymiv
(2003), a funtion f(x), whih is de�ned, positive, and measurable in Γ,
is regularly varying in Γ along a family U = {Uk, k ∈ I} i� for some

vetor e ∈ Γ and all x ∈ Γ as xk → x, k → ∞, k ∈ I,

f(Ukxk)

f(Uke)
→ φ(x) > 0, φ(x) <∞.

In the already mentioned paper, this de�nition was used at the study

of asymptotis of in�nitely divisible distributions with a support in ho-

mogeneous ones. Also the asymptoti properties of some lasses of

random permutations and random mappings were investigated (2009,

2010, 2014). Reently (2018), we obtained the limit theorems (integral

and loal) for multiple power series distributions. (In the last two appli-

ations, this de�nition is used in the ase when Γ = Rn
+ and operators

Uk are diagonal).
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In this abstrat, we mention only di�erent multidimensional gener-

alizations of the regularly varying funtions known to the author and

some their appliations in probability theory. But we suppose to give

muh more information in this diretion at the presentation.

Magnetoenephalography inverse ill-posed

problem

T. V. Zakharova
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This paper ontinues a series of studies dealing with noninvasive pre-

operative methods for loalizing eloquent areas of the human brain.

Magnetoenephalography (MEG) is a noninvasive method for study-

ing brain ativity. It has high temporal and spatial resolutions, and

only weakly depends on the inhomogeneities of the head ondutivity,

whih makes it a valuable tool for both neurosiene and linial appli-

ations [1℄.

The inverse problem of magnetoenephalography is ill-posed and dif-

�ult for both analytial and numerial solutions. Additional omplia-

tions arise from the volume (passive) urrents and the assoiated mag-

neti �elds, whih strongly depend on the brain geometry.

An analytial formula is derived for the solution of the forward prob-

lem that omputes the magneti �eld on the surfae of the head from the

known loation and orientation of a urrent dipole in the low-frequeny

approximation in the spherial model [2℄.

In this paper we �nd approximate analytial solutions for the forward

and the inverse problems in the spheroid geometry. We ompare the

obtained results with the exat solution of the forward problem and

dedue that for a wide range of parameters our approximation is valid.

In addition, the paper onsiders the question of the stability of solu-

tions of the inverse problem of MEG to the e�et of noise. The solution

is unstable to the e�et of noise on its angular omponent, but the de-

viation from the true solution is muh less than the noise variane.
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Foundation for Basi Researh (projet 18-07-00252). I aknowledge the
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The appliation of the ICA method and window

dispersion in the study of bioequivalene of drugs
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The original drug is a drug that di�ers from all previously registered

drugs with a pharmaologially ative substane (pharmaeutial sub-

stane) or a ombination of suh substanes.

Generi mediinal produt (generi drug) is a drug that ontains

the same pharmaologially ative substane (pharmaeutial substane)

in the same dose and the same dosage form as the original drug, is

equivalent to the original produt in terms of quality, e�ieny and

pro�le seurity and is produed without a liense of the ompany owning

the original mediinal produt. Implemented after the expiry of the

patent or other exlusive rights to manufature and sale of the original.

Thus, the presene on the market of generi funds is due, �rst of all,

the expiry of the terms of patent protetion for the prodution of original

funds. The term of patent protetion of a mediinal produt, as a rule,

is not more than 20 years.

Generi mediines must meet the same quality, e�ay and safety

standards as the original mediines, but in addition, onvining evidene

© Zakharova T.V., Slivkina A.V., Dranitsyna M., 2018
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must be provided that they are equivalent, previously registered similar

mediines and are linially interhangeable with them.

To date, the main riterion for evaluating bioequivalene is the level

of drug onentration in the blood over time. To do this, experiments

are performed on healthy volunteers, after whih the results are averaged

and the onentration-time urve is plotted against time. The onlusion

about bioequivalene of drugs is made on the basis of the results obtained

by omparing the area under the resulting urves.

However, this method has a huge disadvantage: it is impossible to

trae and take into aount the main stages of the kinetis of the prepa-

ration, and even with a su�iently large oinidene of areas under the

urves, it an not be onluded that the original drug and generi behave

in the human body in the same way [3℄.

In this paper, the method of estimating bioequivalene, whose main

goal is to break the drug onentration urve in the body into ompo-

nents, is onsidered, implying that this urve is a signal that demon-

strates the behavior of the drug. These omponents are diretly related

to the main stages of the drug. Denoting the boundaries of these stages,

we an, with a minimum of error, ompare drugs by the duration and

nature of these stages. To isolate the omponents, methods suh as the

method of independent omponents, the window dispersion method[1℄,

and the study of the variane gamma proess will be used.

The window dispersion is de�ned by the formula [2℄:

WN,t =
1

N − 1

N∑

i=1

(Xi −X)2,

where

X =
1

N

N∑

i=1

Xi.

The window size was hosen empirially, the best results were obtained

with a window width equal to 3 points of referene. Window dispersion

removes the trend and inreases the di�erenes in the onentration val-

ues, so a sharp derease in the window dispersion will orrespond to a

derease in the onentration, whih is the ase with absorption.

The method of independent omponents (OLS, Independent ompo-

nent analysis, ICA) [4℄ is a method for dividing a multidimensional signal

into additive omponents. Suppose we have signal soures s1, s2, ..., sn
and signal reeivers x1, x2, ..., xn. Eah reeiver aptures the weighted
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sum of the signals.

x1(t) = a11 s1(t) + a12 s2(t) + ...+ a1n sn(t),

x2(t) = a21 s1(t) + a22 s2(t) + ...+ a2n sn(t),

... ... ... ...

xn(t) = an1 s1(t) + an2 s2(t) + ...+ ann sn(t),

where t is a �xed instant of time.

Our task is to determine the values of the soures from the values

of the reeivers s, i = 1, ..., n and weights aij , i = 1, ..., n, j = 1, ...,

n. Soures of signal are also alled hidden variables, latent variables or

independent omponents.
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Let a multivariate random variable X = (X1, ..., Xn) have indepen-
dent omponents Xj . Further assume that every omponent Xj has the

d-dimensional stritly stable, or geometrially stritly stable distribution
with the stability index αj (1 < αj ≤ 2) and the harateristi funtion

φj(θj) = E (exp(i θTj Xj)), θj = (θ
(1)
j , ..., θ

(d)
j ) ∈ R

d.

© Zolotukhin I.V., 2018
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Thereby X is both multivariate and multidimensional random vari-

able.

Consider the vetor

Y = (y1, ..., yn) = (β
1/α1

1 X1, ..., β
1/αn

1 Xn),

whih is a sale mixture of the above random variable X and the vetor

β∗ = (β
1/α1

1 , ..., β
1/αn
n ), or, in other words, β∗ is the subordinator of X .

The positive random vetor β mentioned above is given by its Laplae
transform

Φ(s1, ..., sn) = E
(
exp(−

n∑

j=1

sjβj)
)
.

Theorem.

The harateristi funtion of the random variable Y is

ψY (θ1, ..., θn) = Φ(− logφ1(θ1), ...,− logφn(θn)).

As examples of using the expliit expression of the harateristi fun-

tion the following subordinators were onsidered:

� Marshall�Olkin multivariate exponential distribution.

� Multivariate gamma distribution.

In the �rst ase, the distribution is a disrete mixture of the gen-

eralized multivariate Linnik distribution [1℄ and its mixtures with the

distributions of its own projetions onto all the oordinate hyperplanes.

The researh was performed in the framework of the state assignment

of FASO Russia (theme No. 0149-2018-0014).
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