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Estimation of 
onditional distribution fun
tion

under dependent random 
ensored data

A. A. Abdushukurov

1

1
Bran
h of Mos
ow State University in Tashkent, Uzbekistan,

a_abdushukurov�rambler.ru

The aim of paper is 
onsidering the problem of estimation of 
on-

ditional survival fun
tion in the 
ase of right random 
ensoring with

presen
e of 
ovariate.

Let's 
onsider the 
ase when the support of 
ovariate C is the interval

[0, 1] and we des
ribe our results on �xed design points 0 ≤ x1 ≤ x2 ≤
... ≤ xn ≤ 1 at whi
h we 
onsider responses (survival or failure times)

X1, ..., Xn and 
ensoring times Y1, ..., Yn of identi
al obje
ts, whi
h are

under study. These responses are independent and nonnegative ran-

dom variables (r.v.-s) with 
onditional distribution fun
tion (d.f.) at xi,
Fxi

(t) = P (Xi ≤ t/Ci = xi). They are subje
ted to random right 
en-

soring, that is for Xi there is a 
ensoring variable Yi with 
onditional

d.f. Gxi
(t) = P (Yi ≤ t/Ci = xi) and at n-th stage of experiment the ob-

served data is S(n) = {(Zi, δi, Ci), 1 ≤ i ≤ n}, where Zi = min(Xi, Yi),
δi = I(Xi ≤ Yi) with I(A) denoting the indi
ator of event A.

Note that in sample S(n)
r.v. Xi is observed only when δi = 1.

Commonly, in survival analysis to assume independen
e between the

r.v.-s Xi and Yi 
onditional on the 
ovariate Ci. But, in some pra
ti
al

situations, this assumption does not hold. Therefore, in this arti
le we


onsider a dependen
e model in whi
h dependen
e stru
ture is des
ribed

through 
opula fun
tion. So let Sx(t1, t2) = P (Xx > t1, Yx > t2), t1,
t2 ≥ 0, the joint survival fun
tion of the response Xx and the 
ensoring

variable Yx at x. Then the marginal survival fun
tions are SX
x (t) =

1−Fx(t) = Sx(t, 0) and S
Y
x (t) = 1−Gx(t) = Sx(0, t), t ≤ 0. We suppose

that the marginal d.f.-s Fx and Gx are 
ontinuous. Then a

ording to

the Theorem of S
lar (see, [1℄), the joint survival fun
tion Sx(t1, t2) 
an
be expressed as

Sx(t1, t2) = Cx(S
X
x (t1), S

X
x (t2)) , t1, t2 ≥ 0, (1)

where Cx(u, v) is a known 
opula fun
tion depending on x, SX
x and SY

x

in a general way. We 
onsider estimator of d.f. Fx whi
h is equivalent

© Abdushukurov A.A., 2018
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to the relative-risk power estimator [2, 3℄ under independent 
ensoring


ase.

Assume that at the �xed design value x ∈ (0, 1), Cx in (1) is Ar
hi-

medean 
opula, i.e.

Sx(t1, t2) = ϕ[−1]
x (ϕx(S

X
x (t1)) + ϕx (S

Y
x (t2))), t1, t2 ≥ 0, (2)

where, for ea
h x, ϕx : [0, 1] → [0,+∞] is a known 
ontinuous, 
onvex,

stri
tly de
reasing fun
tion with ϕx = 0. We assume that 
opula gen-

erator fun
tion ϕx is stri
t, i.e. ϕx(0) = ∞ and ϕ−1x is a inverse of ϕx.

From (2), it follows that

P (Zx > t) = 1−Hx(t) = Hx(t) = SZ
x (t) = Sx(t, t)

= ϕ−1x (ϕx(S
X
x (t)) + ϕx(S

Y
x (t))), t ≥ 0, (3)

Let H
(1)
x (t) = P (Zx ≤ t, δx = 1) be a subdistribution fun
tion and Λx(t)

is 
rude hazard fun
tion of r.v. Xx subje
ting to 
ensoring by Yx,

Λx(dt) =
P (Xx ∈ dt,Xx ≤ Yx)

P (Xx ≥ t, Yx ≥ t)
=
H

(1)
x (dt)

SZ
x (t−)

. (4)

From (4) one 
an obtain following expression of survival fun
tion SX
x :

SX
x (t) = ϕ−1x

[
−
∫ t

0

ϕ′x
(
SZ
x (u)

)
dH(1)

x (u)
]
, t ≥ 0. (5)

In order to 
onstru
ting the estimator of SX
x a

ording to represen-

tation (5), we introdu
e smoothed estimators of SZ
x , H

(1)
x and regularity


onditions for them. We use the Gasser�M�uller weights

wni(x, hn) =
1

qn(x, hn)

∫ xi

xi−1

1

hn
π

(
x− z

hn

)
dz, i = 1, ..., n, (6)

with

qn(x, hn) =

∫ xn

0

1

hn
π

(
x− z

hn

)
dz,

where x0 = 0, π is a known probability density fun
tion (kernel) and

{hn, n ≥ 1} is a sequen
e of positive 
onstants, tending to zero as n→ ∞,


alled bandwidth sequen
e.

7
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Let's introdu
e the weighted estimators of Hx, S
Z
x and H

(1)
x respe
-

tively as

Hxh(t) =
n∑

i=1

wni(x, hn) I(Zi ≤ t), SZ
xh(t) = 1−Hxh(t),

H
(1)
xh (t) =

n∑

i=1

wni(x, hn) I(Zi ≤ t, δi = 1). (7)

Then plugging estimators (6) and (7) in (5), we obtain the following

intermediate estimator of SX
x :

SX
xh(t) = 1− Fxh(t) = ϕ−1x

[
−
∫ t

0

ϕ′x
(
SZ
x (u)

)
dH(1)

x (u)

]
, t ≥ 0.

In this work we propose the next extended analogue of estimator

introdu
ed in [2, 3℄:

ŜX
xh(t) = ϕ−1x

[
ϕ
(
SZ
xh(t)

)
· µxh(t)

]
= 1− F̂xh(t), (8)

where

µxh(t) = ϕ
(
SX
xh(t)

)
/ϕ
(
S̃Z
xh(t)

)
,

ϕ
(
SX
xh(t)

)
= −

∫ t

0

ϕ′x
(
SZ
xh(u)

)
dH

(1)
xh (u),

ϕ
(
S̃Z
xh(t)

)
= −

∫ t

0

ϕ′x
(
SZ
xh(u)

)
dHxh(u).

In order to investigate the estimate (6) we introdu
e some 
onditions.

For the design points x1, ..., xn, denote

∆n = min
1≤i≤n

(xi − xi−1), ∆n = max
1≤i≤n

(xi − xi−1).

For the kernel π, let

‖π‖22 =

∫ ∞

−∞

π2(u) du, mν(π) =

∫ ∞

−∞

uν π(u) du, ν = 1, 2.

Moreover, we use next assumptions on the design and on the kernel

fun
tion:

(A1) As n→ ∞, xn → 1, ∆n = O( 1
n ), ∆n −∆n = o( 1

n ).

8
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(A2) π is a probability density fun
tion with 
ompa
t support

[−M,M ] for some M > 0, with m1(π) = 0 and |π(u) − π(u′)| ≤
C(π) |u − u′|, where C(π) is some 
onstant.

Let THx
= inf{t ≥ 0 : Hx(t) = 1}. Then THx

= min(TFx
, TGx

).
For our results we need some smoothnees 
onditions on fun
tions Hx(t)

and H
(1)
x (t). We formulate them for a general (sub)distribution fun
tion

Nx(t), 0 ≤ x ≤ 1, t ∈ R and for a �xed T > 0.

(A3)

∂2

∂x2Nx(t) = N̈x(t) exists and is 
ontinuous in (x, t) ∈ [0, 1] ×
[0, T ].

(A4)

∂2

∂t2Nx(t) = N ′′x (t) exists and is 
ontinuous in (x, t) ∈ [0, 1] ×
[0, T ].

(A5)

∂2

∂x ∂tNx(t) = Ṅ
′
x(t) exists and is 
ontinuous in (x, t) ∈ [0, 1]×

[0, T ].

(A6)

∂ϕx(u)
∂u = ϕ′x(u) and

∂2ϕx(u)
∂u2 = ϕ′′x(u) are Lips
hitz in the x-

dire
tion with a bounded Lips
hitz 
onstant and

∂3ϕx(u)
∂u3 = ϕ′′′x (u) exists

and is 
ontinuous in (x, u) ∈ [0, 1]× (0, 1].
Under 
onditions (A1)-(A6) we derive an almost sure representation

result of the di�eren
e F̂xh(t) − Fx(t) with rate and weak 
onvergen
e

results for the pro
ess

{
(nhn)

1/2
[
F̂xh(·) − Fx(·)

]
, 0 ≤ t ≤ T

}
to the

Gaussian pro
esses.

Referen
es

1. R. B.Nelsen, An Introdu
tion to Copulas, Springer, New York, 1999.

2. A.A.Abdushukurov, Nonparametri
 estimation of distribution fun
tion

based on relative risk fun
tion, Commun. Statist.: Theory and Methods

27:8 (1998) 1991�2012.

3. A.A.Abdushukurov, On nonparametri
 estimation of reliability indi
es

by 
ensored samples, Theory Probab. Appl. 43:1 (1999) 3�11.

Stability analysis of retrial queueing systems based

on the syn
hronization method

L. G. Afanaseva

1

1
Mos
ow State University, Mos
ow, Russia, l.g.afanaseva�yandex.ru

We 
onsider two retrial queueing models M1 and M2 in whi
h pri-

mary 
ustomers arrive a

ording to a regenerative �ow {X(t), t ≥ 0} of
© Afanaseva L.G., 2018
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rate λX (Afanaseva and Bashtova [2℄). Let {θj}∞j=1 be a sequen
e of re-

generation points for X(t), τj = θj+1−θj is the j-th regeneration period
and ξj = X(θj+1) − X(θj) (j = 0, 1, ..., θ0 = 0). Assume E τ1 < ∞,

E ξ1 <∞ then w.p. 1

λX = lim
t→∞

X(t)

t
=

E ξ1
E τ1

.

There are m identi
al servers in the systems and servi
e times form

a sequen
e {ηn}∞n=1 of independent identi
ally distributed (iid) random

variables with 
.d.f. B(x) and �nite mean b =
∫∞
0 x dB(x). An arriving


ustomer �nding one or more servers idle obtains servi
e immediately.

Customers who �nd all servers busy go dire
tly to the orbit and start

generating requests for servi
e. For the model M1 we assume that the

�ow of requests for servi
e from the orbit is a doubly sto
hasti
 Poisson

pro
ess (DSPP) (see Grandell [3℄) with a random intensity ν(Z(t)). Here
Z(t) is the number of 
ustomers on the orbit at time t. If there is an idle
server at time of the request from the orbit then the servi
e one from

Z(t) 
ustomers begins.

In the model M2 the repeated requests are realized through iid ran-

dom intervals {ζn}∞n=0 with E ζn = ν−1 independently of the number

of 
ustomers on the orbit. Thus, the rate of the �ow of the repeated

requests is a 
onstant that is equal to ν. For the both models M1 and

M2 we 
onsider a sto
hasti
 pro
ess q(t) that is the number of 
ustomers
in the system at time t. We will 
all this pro
ess a stable one if there

exists the limit

lim
t→∞

P(q(t) ≤ x) = Φ(x),

where Φ(x) is a d.f. not depending on any initial state of the system.

Condition 1.

P(ξ1 = 0, τ1 > 0) +P(ξ1 = 1, τ1 − t1 > η1) > 0,

where θ1 + t1 � is the arrival time and η1 the servi
e time of the unique

ustomer on the regeneration period (θ1, θ2).

Note, this 
ondition provides the hit of the pro
ess q(t) to zero state
from any initial state of the system with positive probability.

Condition 2. For the model M2 the random variable ζn has the

se
ond exponential phase.

10
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This means that

ζn = ζ(1)n + ζ(2)n ,

where ζ
(1)
n and ζ

(2)
n are independent random variables and

P(ζ(2)n > x) = e−γx, γ > 0.

Under Condition 1 the pro
ess q(t) is a regenerative one for the model
M1 and for the model M2 it is valid under additional Condition 2.

Stability Theorem for the Model M2

Let N(t) be a 
ounting pro
ess for the sequen
e {ζn}∞n=0, i.e.

N(t) = max
{
k ≥ 0 :

k∑

j=1

ζj ≤ t
}
.

Consider m-server system with refusals and a regenerative input �ow

U(t) = X(t) + N(t), i.e. Reg|G|m|0. Let n(t) be the number of busy
servers at time t in this system and

lim
k→∞

P(n(tk) = j) = pj , j = 0, 1, . . . ,

where {tk}∞k=1 is the sequen
e of moments of jumps of the input �ow

U(t). We de�ne the tra�
 rate for the model M2 as follows:

ρ2 =
λX

(λX + ν)(1− pm)
.

Theorem 1. Let Conditions 1 and 2 be ful�lled. The pro
ess q(t) is
a stable one i� ρ2 < 1.

The proof is based on syn
hronization of X(t) and auxiliary pro
ess

Ỹ (t) that is the number of served 
ustomers up to time t in the auxiliary

system M̃2 in whi
h always there are 
ustomers on the orbit.

Corollary 1. Let X(t) and N(t) be Poisson pro
esses with rate λ and
ν respe
tively. Then q(t) is a stable pro
ess i�

λ

λ+ ν
<

m−1∑
j=0

αj

j!

m∑
j=0

αj

j!

, (1)

11
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where α = b (λ+ ν).

Stability Theorem for the Model M1

Theorem 2. Let Condition 1 be ful�lled. The intensity of repeated

requests is nonde
reasing fun
tion ν(j) and lim
j→∞

ν(j) = ∞. Then q(t) is

a stable pro
ess i�

ρ =
λb

m
< 1.

Now 
onsider the 
ase

lim
j→∞

ν(j) = ν <∞. (2)

Corollary 2. Let X(t) be a Poisson pro
ess, ν(j) is non-de
reasing
fun
tion and (2) holds. Then for the model M1 the ne
essary and su�-


ient 
ondition is of the form (1).

Con
lusion. We 
onsidered the generalization of the 
lassi
al retrial

systems. The pioneering studies of retrial queues present the 
on
ept of

"retrial time" as an alternative to the models of telephone systems queues

with refusals (see [2℄ and literature there). It was assumed for retrial

models that ea
h 
ustomer on the orbit generates a �ow of repeated

request independently of the rest 
ustomers in the retrial group. Thus in

the 
lassi
al retrial poli
y we have for the modelM1 the intensity ν(j) =
νj . The se
ond 
lass 
ontains models with 
onstant retrial rate. This


onstant retrial poli
y was introdu
ed by Fayolle [5℄. Sin
e Fayolle, there

has been a rapid growth in the literature (see e.g. [4℄, [6℄). Our modelM1

belongs to this 
lass but we assume that input �ow is a regenerative one

and intervals between repeated requests from the orbit have an arbitrary

distribution.
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2
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We 
onsider the problem of �nding the optimal portfolio with two-

sided 
onstraints for weights and with 
ommission under 
ertainty. For

the Markowitz model (portfolios without short positions) a 
omplete ef-

�
ient algorithmi
 solution of the problem is proposed. A heuristi
 e�-


ient algorithm for solving this problem for the Bla
k's model (portfolios

with short positions) is also proposed. Under un
ertainty the �nan
ial

analyst usually 
onsiders the most likely s
enarios of the possible 
omple-

tion of the transa
tion. In that 
ase, the analysis of individual s
enarios

is 
arried out under 
ertainty. The 
ondition of 
ertainty means that

the investor knows both the 
urrent and future pri
es of assets (based

on pri
e fore
asts) and in
ome. The investigation of portfolio transa
-

tions under 
ertainty is de�nitely useful and widely used by a

ountants

and auditors in the analysis of 
losed transa
tions. It is signi�
ant that

unlike the ideal 
ase without 
ommission, the task of 
hoosing the op-

timal portfolio for Bla
k's model is nonsmooth. Portfolio analysis with


ommission under un
ertainty was investigated in detail in [1, 2℄.

In what follows, we 
onsider one-period portfolio transa
tions with

a �xed and �nite investment horizon. In addition, we 
onsider only the

investment portfolios i.e. portfolios for whi
h the pro
eeds from the short

sales do not 
over the 
osts of opening the long positions of the portfolio.

For simpli
ity, assume that the dividends will not be paid separately.

Note that under 
ertainty the rational investor 
hooses portfolio with

the highest return.

© Al-Nator M.S., Al-Nator S.V., 2018

13



XXXV International Seminar on Stability Problems for Sto
hasti


Models

Suppose that we have n assets A1, . . . , An. Let rk denote the pri
e

return of Ak. The portfolio will be denoted by the ve
tor of asset weights

x = (x1, . . . , xn):
∑n

k=1 xk = 1 (the budget 
onstraint). If there are no


ommission 
osts, it is well known that the portfolio return r(x) is the
weighted average of the individual asset returns r(x) =

∑n
k=1 xk rk.

The investor 
an not quite arbitrarily 
hoose these weights for two

reasons. First, the portfolio weights must satisfy the budget 
onstraint.

Se
ondly, in many markets there are stri
t limitations on the size of

short positions. For example, institutional investors su
h as insuran
e


ompanies, pension funds and some 
redit institutions are obliged to

adhere to legislation requirements for assets weights of di�erent 
lasses

(su
h as government se
urities, shares of 
ompanies, real estate et
.).

Spe
ifying the 
lass of admissible portfolios de�nes a parti
ular opti-

mization problem. Usually this 
lass is de�ned by a system of equations

and inequalities.

First we 
onsider the problem of sele
ting the optimal portfolio with

two-sided 
onstraints and no 
ommission. This problem is not trivial,

but not di�
ult to solve in pra
ti
al terms (see Remark 3 below). This

problem is formulated as follows.

Problem 1. For given returns r1, r2, . . . , rn and a = (a1, . . . , an),
b = (b1, . . . , bn)

maximize r(x) = r1 x1 + r2 x2 + . . .+ rn xn (1)

subje
t to x1 + x2 + . . .+ xn = 1 and (2)

a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , an ≤ xn ≤ bn. (3)

The following theorem 
ontains the ne
essary and su�
ient 
ondition

for the solution existen
e of problem 1. Let A = a1 + a2 + . . .+ an and

B = b1 + b2 + . . .+ bn.

Theorem 1. The problem 1 has a solution if and only if A ≤ 1 ≤ B.
Moreover, when A 6= B an admissible portfolio 
an be found by the

formula

x = a+

(
1−A

B −A

)
(b− a).

If the portfolio transa
tion is opened with a 
ommission α and 
losed

with a 
ommission β, then a

ording to [1℄, [2℄ the portfolio return has

14



XXXV International Seminar on Stability Problems for Sto
hasti


Models

the form

rα,β(x) =
1

1 + α
n∑

k=1

|xk|

(
n∑

k=1

xk rk −
n∑

k=1

(α+ β + β rk) |xk|
)
. (4)

Now 
onsider the 
ase when the investor 
an open only long positions

(the Markowitz model), in other words, the investor forms portfolios

with non-negative weights. In that 
ase, the optimization problem 1 is

formulated as follows

Problem 2. For given returns r1, r2, . . . , rn and ai ≥ 0, bi ≤ 1, i =
1, 2, . . . , n

maximize rα,β(x) = aα,β r(x) − bα,β

subje
t to (2) and (3), where aα,β = 1−β
1+α , bα,β = α+β

1+α .

Re
all that the linear fun
tion (note that the portfolio return is a

linear fun
tion of the portfolio weights) has the largest value on the

boundary of the fun
tion domain. Sin
e there is one equality 
onstraint

and 2n inequality 
onstraints, then, at least, n − 1 
omponents of the

optimal portfolio must satisfy the boundary 
onditions. The solution of

Problem 2 (under the 
onditions of Theorem 1) may be found e�
iently

by the following general algorithm (the Swap Algorithm). Suppose that

for an admissible portfolio x there exists a pair of 
omponents xi and
xj , that do not satisfy the boundary equalities, let for example xi < bi
and aj < xj . Assume also that rj < ri. Then the swap (or ex
hange)

of the assets Ai and Aj is possible. This swap allows to in
rease the

portfolio return. The main idea of the swap is to sell an amount (not

ne
essary integer) of the asset Aj (i.e., we de
rease the weight xj by a


ertain amount h > 0) and to buy Ai on the amount of revenue from the

sale of Aj (i.e., we in
rease the weight xi by the same amount h > 0).
It is easy to see that the swap preserves the budget 
onstraint. Note

that the swap will preserve the boundary 
onditions, if h satis�es the

inequalities aj ≤ xj − h and xi + h ≤ bi or, equivalently h ≤ xj − aj
and h ≤ bi − xi. The swap in
reases the portfolio return by the value

∆rij = h aα,β (ri − rj) > 0. At the same time the extremal swap with

h = min{xj−aj, bi−xi} gives the greatest growth of the portfolio return.
Remark 1. If all assets have the same return: r1 = r2 = · · · = rn =

r0 then for the Markowitz model all portfolios have the same return

rα,β(x) = aα,β r0 − bα,β. In that 
ase, the investor is indi�erent to
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the 
hoi
e of a parti
ular portfolio, provided that the re
eived return is

positive and satisfa
tory for the investor.

Remark 2. Let ri = max
k=1,...,n

{rk} and bi = 1. Then the Problem 2

admits a trivial solution. Namely, the investor invests all the money in

the asset Ai with the highest return, provided that the re
eived return

is positive and satisfa
tory for the investor.

Let us 
onsider the 
ase when the investor 
an open short positions

(the Bla
k's model). Then the optimization problem 1 is formulated as

follows

Problem 3. For given returns r1, r2, . . . , rn and a = (a1, . . . , an),
b = (b1, . . . , bn) maximize rα,β (see (4)) subje
t to (2) and (3).

Under the 
onditions of Theorem 1, the Problem 3 always has a

solution, sin
e one seeks the maximum of a 
ontinuous fun
tion on a


ompa
t set. Note that the return of the optimal portfolio should be

positive and satisfa
tory for the investor.

To solve this problem, we propose the following heuristi
 algorithm.

Renumber the assets so that their returns are lo
ated in nonin
reasing

order: r1 ≥ r2 ≥ . . . ≥ rn. Apparently, in a typi
al situation the optimal
portfolio x∗ = (x∗1, x

∗
2, . . . , x

∗
n) has the following property: there is a

k su
h that x∗1, x
∗
2, . . . , x

∗
k ≥ 0 and x∗k+1, . . . , x

∗
n ≤ 0. This allows

to redu
e the solution of the Problem 3 to the solution of n smooth

problems. Namely, for ea
h k = 1, 2, . . . , n we solve the Problem 3

under the 
onditions that x1, x2, . . . , xk ≥ 0 and xk+1, xk+2, . . . ,

xn ≤ 0 and then we 
hoose the solution with the highest return from the

resulting n solutions.

Remark 3. If α = β = 0 then the Swap Algorithm is appli
able

to Bla
k's model. Moreover, for the Markowitz model, the solution of

Problem 2 
oin
ides with the solution of a similar problem without 
om-

mission.
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The goal of any �nan
ial transa
tion in the se
urities market is to

a
hieve maximum in
ome and to in
rease the initial 
apital. Optimal

portfolio sele
tion problem is one of the basi
 resear
h �elds in modern

�nan
ial e
onomi
s espe
ially in the theory of portfolio analysis. In

multi-period portfolio transa
tions with transa
tion 
osts the problem

of portfolio sele
tion be
omes nontrivial and more hard to solve. In this

work for the Markowitz model (only long positions are allowed for this

model, see [1, 2℄) we solve the problem of 
hoosing the optimal multi-

period self-�nan
ing portfolio strategy with 
ommission under 
ertainty

(we give a 
omplete proof for this solution). In other words, we are

looking for a strategy for whi
h all the released money from the sale of

some assets will be invested in the a
quisition of other assets in order to

maximize the portfolio value at the end of the investment horizon.

We emphasize that the solution of this problem is nontrivial and

may di�er from its solution without 
ommission. One-period portfolio

analysis with 
ommission under un
ertainty was investigated in detail

in [3, 4℄.

Let the market 
onsist of n assets A1, A2, . . . , An. The portfolio at

time t will be denoted by the position ve
tor z(t) = (z1(t), z2(t), . . . ,
zn(t)), where zk(t) ≥ 0 is the position of Ak (note that zk(t) is the

amount of Ak in the portfolio at the time t). Let pk(t) be the asset pri
e
of Ak at time t. Then the market state at any time t is spe
i�ed by the

n-dimensional pri
e ve
tor p(t) = (p1(t), p2(t), . . . , pn(t)).
In what follows, we 
onsider multi-period portfolio transa
tions with

�xed and �nite investment horizon. We assume that 
hanges in asset

pri
es o

ur only at dis
rete instants of time.

By strategy we mean a sequential restru
turing of the portfolio

(formed at the time t0 = 0 with an initial 
apital) at the moments

t = t0, t1, . . . , tN , in order to maximize the portfolio value at the time

tN . We denote the strategy by

Z[t0,tN ] = {z(t0), z(t1), . . . , z(tN−1)}. (1)

© Al-Nator M.S., Al-Nator S.V., Kasimov Yu.F., 2018
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The strategy Z[t0,tN ] is 
alled admissible if all the released money from

the sale of some assets is invested in the a
quisition of other assets.

The optimization problem with 
ommission α is formulated as fol-

lows:

For the investment horizon [t0, tN ] and the pri
e fore
ast [pk(ti)]
i=0,N
k=1,n

�nd a strategy

Z∗[t0,tN ] = {z∗(t0), z∗(t1), . . . , z∗(tN−1)} (2)

that satis�es at any time ti, i = 1, . . . , N the balan
e equation

n∑

k=1

zk(ti−1) pk(ti) =

n∑

k=1

zk(ti) pk(ti)+α

n∑

k=1

|zk(ti)−zk(ti−1)|pk(ti) (3)

su
h that

〈z∗(tN−1),p(tN )〉 = max
Z[t0,tN ]

〈z(tN−1),p(tN )〉, (4)

where 〈 , 〉 is the standard s
alar produ
t in Rn
.

We need the following notation to des
ribe the optimal strategy 
on-

stru
tion s
heme:

ck(ti, ti+1) =
pk(ti+1)

pk(ti)
, k = 1, n, i = 0, N − 1,

cmax(ti, ti+1) = max
1≤k≤n

ck(ti, ti+1), k = 1, n, i = 0, N − 1,

S(ti) =

n∑

k=1

zk(ti)pk(ti), i = 0, N,

λk(ti) =
Sk(tN )

Sk(ti)
, k = 1, n, i = 0, N,

ωk(ti, ti+1) = λk(ti+1)ck(ti, ti+1), k = 1, n, i = 0, N − 1,

ωmax(ti, ti+1) = max
1≤k≤n

ωk(ti, ti+1), i = 0, N − 1,

ρk(ti, ti+) = aαωmax(ti, ti+1)− ωk(ti, ti+1), k = 1, n, i = 0, N − 1,

where aα = (1− α)(1 + α).
The optimal strategy is 
onstru
ted in the dire
tion from the end of

the investment horizon to its beginning:

1. For ea
h ti, sele
t the asset Am with ωm(ti, ti+1) = ωmax(ti, ti+1).
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2. For ea
h k = 1, n 
al
ulate ρk(ti, ti+1).
2.1. If ρk(ti, ti+1) ≤ 0 then the position zk(ti−1) of Ak is not 
hanged

under the transition z(ti−1) → z(ti). In that 
ase set

λk(ti) = ωk(ti, ti+1) = ck(ti, ti+1)λk(ti+1).

2.2. If ρk(ti, ti+1) > 0 then sell all units of the asset Ak and invest

the money from its sale in the asset Am. In that 
ase set

λk(ti) = aα ωmax(ti, ti+1).
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Let n, N be integer numbers. The term homogeneous allo
ation

s
heme of n distinguishable parti
les by N di�erent 
ells will be used for

the random variables η1, . . . , ηN with the joint distribution

P{η1 = k1, . . . , ηN = kN} =
n!

k1! k2! · · · kN !

( 1

N

)n
,

where k1, k2, . . . , kN are nonnegative integer numbers su
h that k1 +
k2 + . . .+ kN = n. Denote α = n

N .

© Alhuzani M., Chuprunov A., 2018
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Let K be an integer number su
h that 0 < K ≤ N . Let r be a

nonnegative integer number. We will 
onsider the random variable

µr(n,K,N) =

K∑

i=1

I{ηi=r}.

Observe that µr(n,K,N) is a number of 
ells from the �rstK 
ells whi
h


ontain r parti
les.

Theorem 1. Let 2 ≤ r and N , K, n → ∞ so that K pr → λ, where
0 < λ <∞ and

K
N < C, 0 < C < 1. We will suppose that

e α− r < C1, where C1 <∞, and

α

N
→ 0.

Then we have

P{µr(n,K,N) = k} = e−λ
λk

k!

(
1 + o(1)

)
, k = 0, 1, . . .

Consider the random variable

η(K,N) = max
1≤i≤K

ηi.

Observe that η(K,N) is a maximal value of a 
ell from the �rst K 
ells.

Theorem 2. Let r ≥ 3. Suppose that N , K, n→ ∞ so that

α

r
→ 0,

α

N
→ 0, K pr+1 → λ,

K

N
< C,

where C < 1 and 0 < λ <∞. Then we have

P{η(K,N) = r} = e−λ + o(1), P{η(K,N) = r + 1} = 1− e−λ + o(1).

Consider the random variable

η(K,1) = min
1≤i≤K

ηi.

Observe that η(K,1) is a minimal value of a 
ell from the �rst K 
ells.

Theorem 3. Suppose r ≥ 3, N , K, n→ ∞ so that

α

r
→ ∞,

α

N
→ 0, K pr−1 → λ,

K

N
< C,
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where 0 < λ <∞, 0 < C < 1. Then we have

P{η(K,1) = r − 1} = 1− e−λ + o(1), P{η(K,1) = r} = e−λ + o(1).

Remark 1. Limit theorems for µr(n,K,N), η(K,N), η(K,1) for the


ase K = N were obtained in many paper (see [1℄ and the bibliography

therein). In [2℄ limit theorems were obtained for µ0(n,K,N).
Remark 2. Let A ⊂ {1, 2, . . . , N}, |A| = K. Denote

µr(n,A,N) =
∑

i∈A

I{ηi=r}, η(A,N) = max
i∈A

ηi, η(A,1) = min
i∈A

ηi.

The distributions of µr(n,A,N), η(A,N) and η(A,1) 
oin
ide with the

distributions of µr(n,K,N), η(K,N) and η(K,1), 
orrespondingly. So

Theorem 1, Theorem 2, Theorem 3 
an be 
onsidered as theorems for

µr(n,A,N), η(A,N) and η(A,1).
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The operation of various queueing systems is of in
reasing interest

when the intensity of the in
oming �ow is high. Therefore, a lot of pa-

pers is devoted to the 
onsideration of 
ertain systems in 
onditions of

in
reasing intensity of the in
oming �ow. In the report, we 
onsider an

in�nite-
hannel system with heavy tails of servi
e times. The property

of gravity of tails leads to the fa
t that, unlike systems with light tails

© Bashtova E.E., Popov A.B., 2018
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of maintenan
e times, two di�erent situations are possible. Namely, de-

pending on whether the intensity grows slowly or rapidly in 
omparison

with the rate of de
rease of the tails of servi
e times, 
onvergen
e to a

stable law turns out, or, under a di�erent normalizing fa
tor, to a normal

law. The report is a generalization of some results of paper of Mikos
h

et
. [1℄, in whi
h for a system with a Poisson input �ow with 
onstant

intensity the 
onvergen
e of �nite-dimensional distributions is proved.

Consider a Poisson �ow on R with periodi
 and integrable over the

period intensity λ(t). Let τ denotes the period of λ(t) and (Γk,−∞ <
k < ∞) be points of this Poisson �ow (su
h that Γ0 < 0 < Γ1). It is

assumed additionally that for any t ∈ R

0 < λ∗ ≤ λ(t) ≤ λ∗ <∞.

Denote

Λ(t) =

t∫

0

λ(y)dy, λ = lim
t→∞

Λ(t)

t
=

Λ(τ)

τ
.

We 
onsider a queueing system with in�nite number of servers. At

every moment Γk a 
laim enters the system and then it is serving during

the time interval Xk. We assume X,X1, X2, ... to be independent and

independent of input �ow, identi
ally distributed random variables and

P (X > x) = F (x) = x−αL(x), x > 0, 1 < α < 2,

where L(x) is a slowly varying fun
tion.
Let

µ := EX.

Now we introdu
e a s
ale parameter T , i.e., 
onsider a family of

Poisson �ows depending on T , in su
h a way that

λT (t) = λ(t)T β , β > 0

for t ∈ R.

Let NT (t) be a number of 
laims in the system at time t:

NT (t) =
∞∑

k=−∞

I[Γk≤t<Γk+Xk]

We investigate the total 
umulative input AT (t)

A(t) = AT (t) =

∫ t

0

NT (s)ds.
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As T → ∞ then AT (t) tends to in�nity too. We will prove that 
u-

mulative input 
an be approximated by stable law, when the 
onne
tion

rate is slow. Besides, this approximation does not depend on periodi
ity

of λ(t) and 
an be expressed in terms of the average value of λ(t) over
period. On the other hand, for the 
ase of fast growth of the intensity

we need another normalizing 
oe�
ient and we show that periodi
ity of

the intensity fun
tion plays an essential role and in this 
ase we have for

any point z ∈ [0, τ) its own normal law as a limit.

Introdu
e a quantile fun
tion

b(t) =

(
1

F

)←
(t),

where

g←(y) = inf{x : g(x) ≥ y}.
b(t) is a regularly varying fun
tion with parameter

1
α .

We say that the Fast Growth Condition is ful�lled if

lim
T→∞

b(λTT )

T
= ∞.

We say that the Slow Growth Condition is ful�lled if

lim
T→∞

b(λTT )

T
= 0.

Remarks. Fast Growth Condition is ful�lled if β > α. Slow Growth

Condition is ful�lled if β < α.

Introdu
e

A∗(T ) =
A(T )− µΛ(T )√
λ(T )T 3F (T )

.

Theorem. It follows from Fast Growth Condition that for any z ∈
[0, τ ]

A∗(nτ + z)
d→ N(0, σ2(z))if n→ ∞,

where

σ2(z) = σ2
1 + σ2

2(z) + σ2
3 ,

σ2
1 =

α

(2− α)(3 − α)
,
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σ2
2(z) =

λ

(3 − α)
∞∫
0

F (u)λ(z − u) du

,

σ2
3 =

λ

(3− α)
∞∫
0

F (u)λ(−u) du
.

Theorem. It follows from Slow Growth Condition that

lim
t→∞

A(T )− µΛ(T )

b(λT )

d→ Xα,

where

EeiθXα = exp
{
− |θ|α

(
1− i · sign(θ) tg πα

2

)}
,

i.e., Xα has α-stable distribution.
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1. Introdu
tion and summary

An interesting quantitative 
omparison 
an be obtained by tak-

ing a viewpoint similar to that of the asymptoti
 relative e�
ien
y

(ARE) of estimators, and asking for the number m(n) of observations
needed by estimator δm(n)(X1, . . . , Xm(n)) to mat
h the performan
e

of δ∗n(X1, . . . , Xn) (based on n observations). Although the di�eren
e

m(n) − n seems to be a very natural quantity to examine, histori
ally

© Bening V.E., Kornievskaya A.A., 2018
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the ratio n/m(n) was pre�ered by almost all authors in view of its sim-

pler behaviour. The �rst general investigation of m(n) − n was 
arried

out by Hodges and Lehmann [1℄. They name m(n)− n the de�
ien
y of

δn with respe
t to δ∗n and denote it as

dn = m(n)− n. (1.1)

If limn→∞ dn exists, it is 
alled the asymptoti
 de�
ien
y of δn with

respe
t to δ∗n and denote as d. At points where no 
onfusion is likely, we
shall simply 
all d the de�
ien
y of δn with respe
t to δ∗n.

The de�
ien
y of δn relative to δ∗n will then indi
ate how many ob-

servations one loses by insisting on δn, and thereby provides a basis for

de
iding whether or not the pri
e is too high. If the risk fun
tions of

these two estimators are

Rn(θ) = Eθ

(
δn − g(θ)

)2
, R∗n(θ) = Eθ

(
δ∗n − g(θ)

)2
,

then by de�nition, dn(θ) ≡ dn = m(n) − n, for ea
h n, may be found

from

R∗n(θ) = Rm(n)(θ). (1.2)

In order to solve (1.1), m(n) has to be treated as a 
ontinuous variable

(see [1℄). Generally R∗n(θ) and Rn(θ) are not known exa
tly and we have
to use approximations. Here these are obtained by observing that R∗n(θ)
and Rn(θ) will typi
ally satisfy asymptoti
 expansions (a.e.) of the form

R∗n =
a(θ)

nr
+
b(θ)

nr+s
+ o

(
n−(r+s)

)
, (1.3)

Rn =
a(θ)

nr
+
c(θ)

nr+s
+ o

(
n−(r+s)

)
, (1.4)

for 
ertain a(θ), b(θ) and c(θ) not depending on n and 
ertain 
onstants

r > 0, s > 0. The leading term in both expansions is the same in view of

the fa
t that ARE is equal to one. From (1.1)�(1.4) is now easily follows

that (see [1℄)

dn(θ) ≡
c(θ) − b(θ)

r a(θ)
n(1−s) + o

(
n(1−s)

)
. (1.5)

Hen
e

d(θ) ≡ d =





±∞, 0 < s < 1,

c(θ)− b(θ)

r a(θ)
, s = 1,

0, s > 1.

(1.6)
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A useful property of de�
ien
ies is the following (transitivity): if a third

estimator δ̄n is given, for whi
h the risk R̄n(θ) also has an expansion of

the form (1.4), the de�
ien
y d of δ̄n with respe
t to δ∗n satis�es

d = d1 + d2,

where d1 is the de�
ien
y of δ̄n with respe
t to δn and d2 is the de�
ien
y
of δn with respe
t to δ∗n.

The situation where s = 1 seems to be the most interesting one.

Hodges nad Lehmann [1℄ demonstrate the use of de�
ien
y in a number

of simple examples for whi
h this is the 
ase (see also [3℄).

In the 
ommuni
ation, we dis
uss the number of appli
ations of the

de�
ien
y 
on
ept in the problems of point estimation and testing sta-

tisti
al hypotheses in the 
ase when number of observations is random.

2. Estimators based on the sample with random size

Consider random variables (r.v.'s) N1, N2, ... and X1, X2, ..., de�ned

on the same probability spa
e (Ω,A,P). By X1, X2, ..., Xn we will

mean statisti
al observations whereas the r.v. Nn will be regarded as

the random sample size depending on the parameter n ∈ N. Assume that

for ea
h n ≥ 1 the r.v. Nn takes only natural values (i.e., Nn ∈ N) and is

independent of the sequen
e X1, X2, ... Everywhere in what follows the

r.v.'s X1, X2, ... are assumed independent and identi
ally distributed

with distribution depending on θ ∈ Θ ∈ R.

For every n ≥ 1 by Tn = Tn(X1, ..., Xn) denote a statisti
, i.e., a

real-valued measurable fun
tion of X1, ..., Xn. For ea
h n ≥ 1 we de�ne
a r.v. TNn

by setting TNn
(ω) ≡ TNn(ω)(X1(ω), ..., XNn(ω)(ω)), ω ∈ Ω.

Theorem 2.1.

1. If δn = δn(X1, . . . , Xn) is any unbiased estimator of g(θ) that is,
it satis�es

Eθδn = g(θ), θ ∈ Θ

and δNn
≡ δNn

(X1, . . . , XNn
), then

EθδNn
= g(θ), θ ∈ Θ.

2. Suppose that numbers a(θ), b(θ) and C(θ) > 0, α > 0, r > 0,
s > 0 exist su
h that

∣∣∣R∗n(θ)−
a(θ)

nr
− b(θ)

nr+s

∣∣∣ 6 C(θ)

nr+s+α
,

where

R∗n(θ) = Eθ

(
δn(X1, . . . , Xn)− g(θ)

)2
,
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then

∣∣∣Rn(θ)− a(θ)EN−rn − b(θ)EN−r−sn

∣∣∣ 6 C(θ)EN−r−s−αn ,

where

Rn(θ) = Eθ

(
δNn

(X1, . . . , XNn
)− g(θ)

)2
.

Corollary 2.1. Suppose that numbers a(θ), b(θ) and r > 0, s > 0
exist su
h that

R∗n(θ) ≡ Eθ

(
δn(X1, . . . , Xn)− g(θ)

)2
=
a(θ)

nr
+
b(θ)

nr+s
,

then

Rn(θ) ≡ Eθ

(
δNn

(X1, . . . , XNn
)− g(θ)

)2
= a(θ)EN−rn + b(θ)EN−r−sn .

Let observationsX1, . . . , Xn have expe
tation EθX1 = g(θ) and vari-
an
e DθX1 = σ2(θ). The 
ustomary estimator for g(θ) based on n ob-

servation is

δn =
1

n

n∑

i=1

Xi. (2.1)

This estimator is unbiased and 
onsistent, and its varian
e is

R∗n(θ) = Dθ δn =
σ2(θ)

n
. (2.2)

If this estimator based on the sample with random size we have (see

Corollary 2.1)

Rn(θ) = Dθ δNn
(X1, . . . , XNn

) = σ2(θ)EN−1n . (2.3)

If g(θ) is given, we 
onsider the estimator for σ2(θ) in the form

δ̄n =
1

n

n∑

i=1

(Xi − g(θ))2. (2.4)

This estimator is unbiased and 
onsistent, and its varian
e is

R̄∗n(θ) = Dθ δ̄n =
µ4(θ)− σ4(θ)

n
, µ4(θ) = Eθ (X1 − g(θ))4. (2.5)
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For this estimator with random size one have

R̄n(θ) = Dθ δ̄Nn
(X1, . . . , Xn) =

(
µ4(θ)− σ4(θ)

)
EN−1n . (2.6)

In the pre
eding example, suppose that g(θ) is unknown but that instead
of (2.4) we are willing to 
onsider any estimator of the form (see (2.1))

δ̃(γ)n ≡ δ̃n =
1

n+ γ

n∑

i=1

(
Xi − δn

)2
, γ ∈ R. (2.7)

If γ 6= −1, this will not be unbiased but may have a smaller expe
ted

squared error that the unbiased estimator with γ = −1.
One easily �nd (see [1℄, (3.6) and [2℄)

R̃∗n(θ) = σ4(θ)
[µ4(θ)/σ

4(θ)− 1

n
+

+
(γ + 1)2 + 2− 2 (γ + 1) (µ4(θ)/σ

4(θ)− 1)

n2

]
+O

(
n−3

)
. (2.8)

Using Theorem 1.1, we have

R̃n(θ) = Eθ

(
δ̃Nn

(X1, . . . , XNn
)− σ2(θ)

)2
=

= σ4(θ)
[
(µ4(θ)/σ

4(θ)− 1)EN−1n +

+
{
(γ+1)2+2−2 (γ+1) (µ4(θ)/σ

4(θ)−1)
}
EN−2n

]
+O

(
EN−3n

)
. (2.9)

3. De�
ien
ies of some estimators based on the samples

with random size

When the de�
ien
ies of statisti
al estimators 
onstru
ted from sam-

ples of random size Nm(n) and the 
orresponding estimators 
onstru
ted

from samples of non-random size n (under the 
ondition ENn = n)
are evaluated, we a
tually 
ompare the expe
ted size m(n) of a random
sample with n by virtue of the quantity dn = m(n) − n and its limit

value.

We now apply the results of se
tion 2 to the three examples given in

this se
tion. Let Mn be the Poisson r.v. with parameter n − 1, n > 2,
i.e.

P
(
Mn = k

)
= e(1−n)

(n− 1)k

k!
, k = 0, 1, . . .
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De�ne the random size as Nn = Mn + 1, then ENn = n and EN−1n =
1
n + 1

n2 + o
(
n−2

)
. The de�
ien
y of δNn

relative to δn (see (2.1)) is given

by (2.2), (2.3), (3.1) and (1.6) with r = s = 1, a(θ) = σ2(θ), b(θ) = 0,
c(θ) = σ4(θ), and hen
e is equal to d = 1. Similarly, the de�
ien
y

of δ̄Nn
relative to δ̄n (see (2.4)) is given by (2.5), (2.6) and (1.6) with

r = s = 1, a(θ) = c(θ) = µ4(θ) − σ4(θ), b(θ) = 0, and hen
e is equal to

d̄ = 1. Consider now third example (see (2.7)). We have EN−2n ∼ 1
n2 ,

n → ∞. Now the de�
ien
y of δ̃Nn
relative to δ̃n (see (2.7)) is given

by (2.8), (2.9) and (1.6) with r = s = 1 and hen
e is equal to d̃ = 1 and

the de�
ien
y of δ̃
(γ1)
Nn

relative to δ̃
(γ2)
Nn

(see (2.7)) is given by (1.6) with

r = s = 1 and hen
e is equal to

d̃γ1,γ2 = (γ1 − γ2)
( γ1 + γ2 + 2

µ4(θ)/σ4(θ)− 1
− 2

)
.

These examples illustrate the following

Theorem 3.1. Suppose that numbers a(θ), b(θ) and k1, k2 exist su
h
that

R∗n(θ) =
a(θ)

n
+
b(θ)

n2
= o
(
n−2

)

and

EN−1n =
1

n
+
k1
n2

+ o
(
n−2

)
, EN−2n =

k2
n2

+ o
(
n−2

)
,

EN−3n = o
(
n−2

)
,

then the asymptoti
 de�
ien
y of δNn
(X1, . . . , XNn

) with respe
t to

δn(X1, . . . , Xn) is equal to

d(θ) =
k1 a(θ) + b(θ) k2 − b(θ)

a(θ)
.
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In this paper we investigate a single-server retrial queueing system

with 
ollision of the 
ustomer and an unreliable server (J. S.Kim [2℄).

The results are provided by the help of software tool MOSEL-2

(T.B�er
zes, J. Sztrik,

�

A.T�oth, A.Nazarov [1℄). The number of sour
es of


alls is �nite and 
ollision (Nazarov and Kva
h and Yampolsky [3℄, T�oth

and B�er
zes and Sztrik and Kva
h [4℄) 
an take pla
e. If a 
ustomer

�nds the server idle, he enters into servi
e immediately. The failure of

server blo
k the system's operation therefore the arriving 
ustomers 
an

not enter the system, meaning that those 
alls are lost. Our interest is

to give the main steady-state performan
e measures of the system 
om-

puted by the help of the MOSEL-2 tool. Various �gures represent the

impa
t of blo
king phenomenon on the main performan
e measures like

mean number of 
ustomers in the system, mean response time, mean

time spent in servi
e, mean waiting time (man time spent in the orbit).
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We 
onsider 
on�guration graphs where vertex degrees are indepen-

dent identi
ally distributed random variables with di�erent probability

distributions. Con�guration graphs were �rst introdu
ed by Bollobas in

[1℄. Su
h random graphs frequently prove useful as models of 
omplex


ommuni
ation networks like the transport, telephone, ele
tri
 networks,

so
ial relationships and the main global network � Internet (see, e.g., Hof-

stad [2℄). Let N be a number of verti
es in the graph. Vertex degrees

form semiedges that are numbered in an arbitrary order. If the sum of

vertex degrees is odd one extra vertex with degree one is added. The

graph is 
onstru
ted by joining all the semiedges pairwise equiprobably

to form edges. Those graphs admit multiple edges and loops. Numerous

observations of real networks suggest that the distribution of degree ξ of
ea
h vertex 
an be spe
i�ed by the relation

P{ξ > k} =
h(k)

kτ
, k = 1, 2, . . . , τ > 0, (1)

© Cheplyukova I.A., Pavlov Yu.L., 2018
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where h(k) is a slowly varying fun
tion. Reittu and Norros [3℄ are sure

that the fun
tion h(k) in (1) does not in�uen
e limit results as N → ∞
and we 
an repla
e h(k) with the 
onstant 1. Then

P{ξ = k} = k−τ − (k + 1)−τ , k = 1, 2, . . . , τ > 0. (2)

Re
ently there appeared some works where the authors note that with

the network size growth the vertex degree distributions may 
hange and

even be
ome random.

We 
onsider two types of 
onditional 
on�guration graphs. One of

them is a subset of graphs where the sum of vertex degrees is known

and it is equal to n. In the other subset the sum of vertex degrees

was bounded from above by n. Su
h 
onditional graphs 
an be use-

ful for modeling of networks for whi
h we 
an estimate the number of

links. They are useful also for studying networks without 
onditions

on the number of edges by averaging the results of 
onditional graphs

with respe
t to the distribution of the sum of degrees. Assume that

the parameter τ of distribution (2) depends on N or it is a random

variable. For di�erent types of parameter τ behaviour we �nd the lim-

iting distributions of the maximum vertex degree and of the number

of verti
es with a given degree for various zones of 
onvergen
e N and

n to in�nity (see Pavlov, Cheplyukova [4,5℄). The main results of this

work are limit theorems for the same degree stru
ture 
hara
teristi
s of


onditional 
on�guration graphs when the distribution of ξ is unknown
and we 
an estimate only limit behaviour of the distribution tail. There

results were proved using the generalized allo
ation s
heme whi
h was

studied by Kol
hin [6℄ and its analogue (Chuprunov and Fazekas [7℄).

Our theorems 
an be looked as appli
ations of this s
heme in the 
ase

of independent random variables with unknown distributions.

A
knowledgements. The study was partially supported by the

Russian Foundation for Basi
 Resear
h, grant 16-01-00005.

Referen
es

1. B. Bollobas, A probabilisti
 proof of an asymptoti
 formula of the num-

ber of labelled regular graphs, European J. Combin. 1:4 (1980) 311�316.

2. R.Hofstad, Random Graphs and Complex Networks, Cambridge Univ.

Press, Cambridge, 2017, Vol. 1.

3. H.Reittu, I. Norros, On the power-law random graph model of massive

data networks, Performan
e Evaluation 55:1-2 (2004) 3�23.

4. Yu. L. Pavlov, Conditional 
on�guration graphs with dis
rete power-law

distribution of vertex degrees, Sborni
: Mathemati
s 209:2 (2018) 258�

275.

32



XXXV International Seminar on Stability Problems for Sto
hasti


Models

5. Yu.L. Pavlov, I. A. Cheplyukova, On the asymptoti
s of degree stru
ture

of 
on�guration graphs with bounded number of edges, Dis
rete Math.

30:1 (2018) 77�94 (in Russian).

6. V. F.Kol
hin, Random Graphs, En
y
lopedia Math. Appl., 53, Cam-

bridge Univ. Press, Cambridge, 1999.

7. A.N.Chuprunov, I. Fazekas, An analogue of the generalized allo
ation

s
heme: limit theorems for the number of 
ells 
ontaining a given number

of parti
ales, Dis
rete Math. Appl. 22:1 (2012) 101�122.

Generalization of the Rao�Robson�Nikulin test

V. V. Chi
hagov

1

1
Perm State University, Perm, Russia, 
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hagov�psu.ru

Let the probability distribution of a random variable ξ be given by

the density fun
tion f0 = f0[x, θ] with respe
t to some σ-�nite mea-

sure ν, whi
h is either a Lebesgue measure or a 
ounting measure, and

θ = (θ1, . . . , θs) ∈ Θ0 ⊂ Rs
is an unknown s-dimensional distribution

parameter. There is a sample X = (X1, . . . , Xn), whose elements are
independent random variables having the same distribution F0 as the

random variable ξ.
The problem of testing a 
omplex hypothesis H0 : f0[x, θ] ∈ P =

{f0 : f0 ∈ f0} is 
onsidered with the help of the Pearson's 
hi-squared

test. In this 
ase, the hypothesis

H ′0 : P (ξ ∈ ∆j) = πj [θ], θ ∈ Θ0, j = 1, . . . , J − 1,

is usually veri�ed instead of H0. Here

πj [θ] =

∫

∆j

f0[x, θ]ν[dx] = EF0 I∆j
[ξ];

∆1, . . . ,∆J are atoms of a partition of the support for the distribution

of ξ, J > s; IB [x] is the indi
ator of the event x ∈ B.
If θ is the known parameter, then the hypothesis H ′0 is veri�ed with

the help of statisti
s

X2
n[θ] =

J∑

j=1

(Uj − nπj [θ])
2

nπj [θ]
=

1

n

J∑

j=1

U2
j

πj [θ]
− n, (1)
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where Uj is the number of sampling elements belonging to the atom ∆j .

If instead of the unknown parameter θ, its maximum likelihood es-

timate θ̃n is used for the sample X, then the Nikulin�Rao�Robson test

[1℄ is used to verify the 
omplex hypothesis H ′0. If

G[θ] = i[θ]−CC⊤

is a nondegenerate matrix, then the statisti
s Y 2
n of this 
riterion is

de�ned by the equation

Y 2
n = X2

n[θ̃n] + υ̃
⊤G−1[θ̃n] υ̃/n, (2)

where i[θ] is a Fisher's information matrix for X1, ĩℓ1ℓ2 is an element of

the matrix i[θ̃n], υ̃ = (υ̃1, . . . , υ̃s)
⊤ , G[θ̃n] = (g̃ℓ1ℓ2)s×s ,

C =

(
1√
πj [θ]

∂πj [θ]

∂θi

)

s×J

, υ̃j =

J∑

i=1

Ui

πi[θ̃n]

∂πi[θ̃n]

∂θj
,

g̃ℓ1ℓ2 = ĩℓ1ℓ2 −
J∑

j=1

1

πj [θ̃n]

∂πj [θ̃n]

∂θℓ1

∂πj [θ̃n]

∂θℓ2
.

A

ording to [1, Theorem 2.3℄, if the 
ertain regularity 
onditions

A are satis�ed and n → ∞, then a sequen
e of values of statisti
s (2)


onverges to a random variable having the 
hi-square distribution with

J − 1 degrees of freedom χ2
J−1. This result is the basis of the asymptoti


Nikulin-Rao-Robson test : the hypothesis H ′0 should be reje
ted with an

asymptoti
 signi�
an
e level α if Y 2
n ≥ χ2

1−α[J − 1], where χ2
1−α[J − 1]

is the (1− α)-quantile of the distribution χ2
J−1.

A generalization of this 
riterion on the basis of 
hi-squared statisti
s

χh is proposed below. New 
riterion allows to verify a more general null

hypothesis than H ′0

H ′′0 : EF0hj [ξ] = µj [θ], j = 1, . . . ,m. (3)

Here {µj [θ], j = 1, . . . ,m} are the mathemati
al expe
tations for a

given set of fun
tions {hj[x], j = 1, . . . ,m} 
al
ulated on the basis of

the hypotheti
al distribution F0 of the random variable ξ. Note that

the null hypothesis H ′0 
orresponds to the set of indi
ator fun
tions

hj [x] = I∆j
[x], j = 1, . . . , J − 1.

Limit behavior of the test statisti
s χh is des
ribed by the following

statement.
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Theorem. Suppose the 
onditions A are satis�ed and the ve
tor fun
-

tion h[x] = (h1[x], . . . , hm[x])
⊤
has the following properties :

(i) the ve
tor fun
tion µ[θ] = (µ1[θ], . . . , µm[θ])
⊤
= EF0h[ξ] is 
on-

tinuously di�erentiable at the point θ;

(ii) the 
ovarian
e matrix of the ve
tor h[ξ], Σh[θ] = VF0h[ξ], and
the information matrix i[θ] are 
ontinuous at the point θ;

(iii) the matri
es Σh[θ] and ψ[θ] = i[θ] − µ̇⊤[θ]Σ−1h [θ] µ̇[θ], where
µ̇[θ] = (∂µi[θ]/∂θj)m×s, are not degenerate.

Then under the hypothesis H ′′0 , the statisti
s

χh =
1

n

{
(u− nµ̃)

⊤
Σ−1h [θ̃n] (u− nµ̃) + ṽ⊤ψ−1[θ̃n]ṽ

}
, (4)

u =

n∑

i=1

h[Xi], µ̃ = µ[θ̃n], v[θ] = µ̇⊤[θ]Σ−1h [θ] (u− nµ̃) , ṽ = v[θ̃],


onverges in distribution to a random variable having a distribution χ2
m,

when n→ ∞.

This result allows to 
onstru
t a 
riterion for testing the hypothesis

H ′′0 .

Generalized Nikulin�Rao�Robson test. Hypothesis H ′′0 is re-

je
ted with asymptoti
 level of signi�
an
e α, if χh ≥ χ2
1−α[m], where

χ2
1−α[m] is the (1 − α)-quantile of the 
hi-square distribution with m

degrees of freedom.

Expli
it formulas for 
omputing the statisti
s χh su

eeded to get in

the following 
ases:

hj [x] = ηj [x]I∆j
[x], j = 1, . . . ,m, m ≤ J, (5)

hj [x] =

{
ηj [x]I∆j

[x], ïðè j = 1, . . . , J,

I∆j−J
[x], ïðè j = J + 1, . . . ,m,

m− J ≤ J − 1, (6)

hj [x] =





ηj [x]I∆j
[x], ïðè j = 1, . . . ,M,

I∆j
[x], ïðè j =M + 1, . . . , J,

I∆j−J
[x], ïðè j = J + 1, . . . ,m,

m− J ≤M − 1, (7)

h[x] =
(
I∆1 [x], . . . , I∆J−1 [x], hJ [x]

)⊤
. (8)

It was found that one of the terms of ea
h formulas obtained has the

form of the right-hand side of equation (1). This fa
t takes pla
e in the


ase of statisti
s (2).
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Comment. If weak regularity assumptions are satis�ed, then the limit

distribution of the statisti
s χh is the same as in the 
ase when the limits

of the atoms are not pre-�xed but are 
hosen as data fun
tions.

In [2℄�[4℄, we have previously 
onsidered spe
ial 
ases of 
onstru
ting


hi-squared tests for 
he
king null hypothesis for the one-parameter form

H ′′0 .
Comparison of the power of the generalized Nikulin�Rao�Robson test

for hj [x] = x I∆j
[x], j = 1, . . . , J − 1, with the power of other two 
hi-

square tests for 
he
king the hypothesis about the normal distribution

law of the random variable ξ ∼ N (µ; σ2), will be ful�lled in the �nal part
of our submission. The power values for other two tests 
an be found in

[5℄. As alternative distributions, we 
onsider the logisti
 and generalized

normal distributions with 4 as the form parameter. The reason is that

these distributions are the nearest ones to the given normal distribution.

The appropriate probability density fun
tions are de�ned as follows:

f1[x] =
1

β1

exp

[
−x− µ

β1

]

(
1 + exp

[
−x− µ

β1

])2 , β1 = σ

√
3

π
,

f2[x] =

√
2

β2Γ[1/4]
exp

[
− (x− µ)4

4β4
2

]
, β2 = σ

√
Γ[1/4]

2Γ[3/4]
.
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The retrial queuing model with a single server providing two phases

of servi
e has many appli
ations and has re
eived signi�
ant attention in

the literature. One 
an �nd important appli
ations of the two-phase ser-

vi
e models in multimedia 
ommuni
ations, pa
ket transmissions, pro-

du
tion lines and tele
ommuni
ation systems. The paper of I. Dimitriou

& C. Langaris [2℄ presented an analysis of a retrial queue with two phases

of servi
e and server va
ation. Every 
ustomer was pla
ed in a single

queue while waiting to be served. When a 
ustomer �nished the �rst

stage of servi
e, then, he either went to the se
ond phase with probabil-

ity 1 − p or, with probability p, departed and joined a retrial box from

whi
h he repeated the demand for the se
ond phase, and left the system

after servi
e 
ompletion.

In this paper, we 
onsider the problem of a dynami
 routing 
ontrol

retrial queue with a single server providing two phases of servi
e. Cus-

tomers arrive to the system a

ording to a Poisson pro
ess with param-

eter λ. The servi
e for ea
h 
ustomer 
onsists of 2 independent phases

d1 and d2, ea
h of whi
h has an exponential distribution with mean 1/µ.
Every 
ustomer must re
eive servi
e in two phases before leaving the sys-

tem. Arriving 
ustomers join a single ordinary queue and wait to start

their servi
e sequen
es in the �rst phase. At the end of the �rst phase

d1, the server may start 
omputing the se
ond phase d2 for the same


ustomer or stop the a
tual servi
e sequen
e in phase 1 and pla
e the


ustomer in the retrial box. In the latter 
ase, the server immediately

serves the next 
ustomer in the �rst phase. The 
ustomers in the retrial

box make a servi
e request with respe
t to a Poisson pro
ess with rate

θ and 
an re
eive the se
ond phase d2 only when the server is idle. The

holding 
ost per 
ustomer per unit time in the primary queue is c1 and
the retrial box is c2. The goal is to �nd a routing poli
y that minimizes

the expe
ted total dis
ounted holding 
ost over in�nite horizon.

© Dahmane Z., Aissani A., 2018

37



XXXV International Seminar on Stability Problems for Sto
hasti


Models

The problem of routing 
ontrol in the retrial queue 
an be formulated

as a semi-Markov de
ision pro
ess in whi
h the de
ision epo
h is the

servi
e 
ompletion point of the �rst stage d1. At a de
ision epo
h, the

system 
ontroller must de
ide whether to keep the 
ustomer in servi
e

or route him to the retrial box. When in servi
e, the 
ustomer re
eives

servi
e d2 and then, leaves the system. When in the retrial box, the


ustomer waits for a random amount of time and then, tries to �nd the

server available again to 
omplete the se
ond phase of servi
e d2 and

leaves the system. The de
ision is taken a

ording to the state of the

system and the 
ost indu
ed by this state and it is based essentially on

minimizing the 
ost of waiting in the system.

State de�nitions. We note that the presen
e of i 
ustomers in the

primary queue means that there are i − 1 
ustomers on hold and one


ustomer in servi
e. When a 
ustomer enters servi
e, the 2 asso
iated

phases are served one at a time; thus, i 
ustomers in the primary queue


orresponds to 2 i (or 2 i− 1) phases (see Tijms [8℄, 
hap.2, p.104). Con-
sequently, we 
an distinguish between states (2 i, j) and (2 i−1, j), where
2 i, (2 i− 1)) denotes the number of servi
e phases yet to be 
ompleted
and j denotes the number of 
ustomers in the retrial box. Finally, the

state of the server is des
ribed as odd or even using the symbols (2 i and
2 i− 1).

Therefore, the state spa
e of the retrial queuing system is

S = {(2i, j), ((2i− 1)+, j) / i, j = 0, 1, 2, ...}.
Under some regularity 
onditions, we prove the existen
e of an op-

timal poli
y that minimizes the expe
ted total dis
ounted 
ost of the

system. In the 
ase of so
ially optimal routing poli
ies, we show that

su
h a poli
y is des
ribed by a swit
hing 
urve based on the number of


ustomers in the system.

We 
onje
ture that the optimal threshold is a non-de
reasing fun
tion

of the number of 
ustomers in the retrial box. The stru
ture of our

swit
hing 
urve is shown in Fig. 1. Numeri
al results for the optimal

threshold for di�erent parameter values are provided and 
on�rm the

validity of this result.
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Fig. 1: The stru
ture of our swit
hing 
urve
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Let X1, . . . , Xn be independent random variables on a 
ommon

probability spa
e (Ω,F ,P) with EXk = 0, EX2
k = σ2

k < ∞ and B2
n =∑n

k=1 σ
2
k > 0. Denote

σ2
k(z) = EX2

k1(|Xk| > z), Ln(z) =
1

B2
n

n∑

k=1

σ2
k(zBn), z > 0,

µk(z) = EX3
k1 (|Xk| < z) , Mn(z) =

1

B3
n

n∑

k=1

µk(zBn), z > 0,

Fn(x) = P(X1 + . . .+Xn < xBn), Φ(x) =
1

2π

∫ x

−∞

e−t
2/2dt, x ∈ R,

∆n = ∆n(F1, . . . , Fn) = sup
x∈R

|Fn(x)− Φ(x)| .

For every ε > 0, γ > 0 we prove inequalities

∆n 6 CE · L3
E,n(ε, γ), L3

E,n(ε, γ) := sup
0<z6ε

{γ|Mn(z)|+ zLn(z)} , (1)

∆n 6 CR · L3
R,n(ε, γ), L3

R,n(ε, γ) :=
(
γ|Mn(ε)|+ sup

0<z6ε
zLn(z)

)
, (2)

where 
onstants CE = CE(ε, γ), CR = CR(ε, γ) depend only on ε, γ.
These inequalities improve and generalize Esseen's and Rozovskii's

results [1℄,[2℄ and, a

ording to Zolotarev's [3℄ 
lassi�
ation, 
an be 
alled

natural 
onvergen
e rate estimates in the Lindeberg�Feller theorem.

Similary to Kolmogorov [4℄, where the 
lassi
al Berry�Esseen inequal-

ity was dis
ussed, we also introdu
e the so-
alled asymptoti
ally exa
t


onstants in (1), (2)

C∗E(ε, γ) = lim sup
ℓ→0

sup
n,F1,...,Fn

{
∆n(F1, . . . , Fn)/ℓ : L

3
E,n(ε, γ) = ℓ

}
,

C∗R(ε, γ) = lim sup
ℓ→0

sup
n,F1,...,Fn

{
∆n(F1, . . . , Fn)/ℓ : L

3
R,n(ε, γ) = ℓ

}
,

© Gabdullin R.A., Makarenko V.A., Shevtsova I.G., 2018
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and present their upper bounds for every ε > 0 and γ > 0.
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Following [1�3℄, 
onsider 
ompeting risks model, where we are inter-

ested in observing of random variable (r.v.) Z with distribution fun
tion

(d.f.) H and pairwise disjoint events

{
A(i)

, i ∈ J = {1, ..., k}
}
, su
h that

P
( k⋃

i=1

A(i)
)
= 1

(see, [3℄). In fa
t, we are interested in joint properties of pairs

{(
Z,A(i)

)
,

i ∈ J
}
.

Let's introdu
e subdistribution fun
tions

{
H(x; i) = P

(
Z ≤ x,A(i)

)
, (x; i) ∈ R× J

}
,

for whi
h H(x; 1) + ... + H(x; k) = H(x). Here we suppose that the

pairs

{(
Z,A(i)

)
, i ∈ J

}
are 
ensored from right and left by r.v.-s Y

© Kakadjanova L.R., 2018
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and L with 
orresponding d.f.-s G and K and that r.v.-s {Z, Y, L} are

independent.

Observation is available the sample

S(n) =

{(
ζj ;χ

(0)
j ;χ

(1)
j , ..., χ

(k)
j

)
, j = 1, ..., n

}
,

where

ζj = max
{
Lj,min{Zj, Yj}

}
, χ

(i)
j = I

(
D

(i)
j

)
, i ∈ J = J ∪ {0},

D
(0)
j =

{
min{Zj, Yj} < Lj

}
∪ {Lj ≤ Yj < Zj},

D
(i)
j = A

(i)
j ∩ {Lj ≤ Zj ≤ Yj}, i ∈ J

and

{
Zj , Lj, D

(0)
j , D

(1)
j , ..., D

(k)
j , j ≥ 1

}

onsequen
e of independent and

identi
ally distributed 
opies of aggregate

{
Z,L, Y,D(0), D(1), ..., D(k)

}
.

It is not di�
ult to see that d.f. of r.v. ζ = max
{
L,min{Z, Y }

}
is

E(x) = P(ζ ≤ x) = K(x)
[
1−

(
1−G(x)

) (
1−H(x)

)]
.

Note that in the sample S(n)
random pairs

(
Zj , A

(i)
j

)
observable only in

the 
ase of χ
(i)
j = 1, i ∈ J .

Consider survival fun
tionals (exponentional-hazard fun
tions)

1− Fτ (x; i) = exp
[
− Λτ (x; i)

]
, i ∈ J

and their estimators

1− Fnτ (x; i) = exp
[
− Λnτ (x; i)

]
, i ∈ J,

where

Λτ (x; i) =

∫

[τ ;x]

dH(u; i)

1−H(u−)
, (x; i) ∈ [τ,∞)× J,

Λnτ (x; i) =
1

n

n∑

j=1

I(ζj ≤ x, χ
(i)
j = 1)

qn(ζj)
, qn(x) = Kn(x)−∆T1n(x; 0),

T1n(x; 0) =
1

n

n∑

j=1

I
(
ζj ≤ x, χ

(0)
j = 1

)
, En(x) =

1

n

n∑

j=1

I(ζj ≤ x),

Kn(x) = exp
[
−
∫

[x,∞)

dT1n(u; 0)

En(u−)

]
.
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Let Lq(Q) be the spa
e of fun
tions f : R → R with the norm

‖f‖Q,q =
{∫

R

|f |q dQ
}1/q

, where Q(x) =

x∫

τ

dE(u)

[K(u)(1− γ(u−))]2
.

We introdu
e some notations from metri
 entropy theory in [4℄ adapting

to 
onsidered 
ompeting risks model.

Let hq(ε) = log N[]

(
ε,F ,Lq(Q)

)
be the metri
 entropy with the

bra
keting number N[]

(
ε,F ,Lq(Q)

)
of the 
lass F in Lq(Q). We de-

�ne also the integral of the metri
 entropy with bra
keting as

J
(q)
[] (δ) = J[]

(
δ;F ;Lq(Q)

)
=

∫ δ

0

[
hq(ε)

]1/2
dε, 0 < δ ≤ 1.

Introdu
e F-indexed pro
ess for ea
h i ∈ J as

G(i)
n f =

∫ T

τ

f(x) d
(
Fnτ (x; i)− Fτ (x; i)

)
, f ∈ F ,

where τ < T < TQ = sup [x : Q(x) <∞].

Theorem 1. Suppose that F ⊂ L1(Q) and J
(1)
[] (1) < ∞. Then as

n→ ∞
sup
f∈F

∣∣∣G(i)
n f
∣∣∣ a.s.−→ 0, i ∈ J.

Theorem 2. Let 
lass F su
h that F ⊂ L2(Q) and J
(2)
[] (1) < ∞.

Then for ea
h i ∈ J as n → ∞ pro
esses {√nG(i)
n f, f ∈ F} 
onverges

weakly in l∞(F) to 
orresponding mean zero Gaussian pro
ess.

These theorems 
an be used for estimation of unknown parameter

θ ∈ Θ ⊆ R. Let fθ : R → R be some loss fun
tion and F = {fθ, θ ∈ Θ}.
For example, (a) in lo
ation estimation: Θ = R and fθ(x) = (x − θ)2

(estimating the mean); fθ(x) = |x− θ|2 (estimating the median); (b) in
maximum likelihood: {hθ, θ ∈ Θ} is a family of densities and fθ(x) =
− log hθ(x). We estimate θ by M�estimator

θn = Arg max
(θ;i)∈Θ×J

{∫
fθ(x) dFnτ (x; i)

}
.

Assume that θn exists. Then under mild 
onditions on 
lass F , from
theorems 1 and 2 one 
an obtain a strong 
onsisten
y and asymptoti
al

normality properties of estimator θn.
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Now 
onsider situation in whi
h {fh,θ, h ∈ H, θ ∈ Θ} is given 
ol-

le
tion of measurable fun
tions fh,θ : R → R indexed by parametri
al

sets H and Θ. For estimator θn we prove that

sup
h∈H

∣∣∣G(i)
n

(
fh,θn − fh,θ

) ∣∣∣ P→ 0, i ∈ J, n→ ∞. (1)

The result (1) helps to derive the limit behaviors of estimators

{Fnτ (·; i) fh,θn, i ∈ J} by using de
omposition
√
n
[
Fnτ (·; i) fh,θn − Fτ (·; i) fh,θ

]
= G(i)

n

(
fh,θn − fh,θ

)
+

+ G(i)
n fh,θ +

√
nFnτ (·; i)

(
fh,θn − fh,θ

)
, i ∈ J.
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Programmed 
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A �rst integral for sto
hasti
 equations. Let (Ω, F, {Ft}T0 ,P) be a
probability spa
e with �ltration. Suppose that γ is a ve
tor with values

in Rγ := Rn′

, W (t) is an m−dimensional Wiener pro
ess, ν(△t;△γ)
© Kara
hanskaya E.V., 2018
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is the standard Poisson measure on [0, T ] × Rn
whose values are inde-

pendent Poissonian random variables on disjoint intervals and sets. The

one-dimensional Wiener pro
esses Wk(t), k = 1, . . . ,m, and the Pois-

son measure ν([0;T ]) are de�ned on the above-mentioned probability

spa
e, Ft-measurable, and mutually independent. Note that the ran-

dom fun
tions appearing below are Ft-measurable and adapt with the

above pro
esses.

Let us 
onsider a system of sto
hasti
 di�erential Ito's equations

(from now on we use summation 
onvention for repeated indi
es)

dXi(t) = ai
(
t,X(t)

)
dt+ bi,k

(
t,X(t)

)
dWk(t)

+

∫

Rγ

gi
(
t,X(t), γ

)
ν(dt, dγ), (1)

X(0) = X0, i = {1, ..., n}, n ≥ 2,

under 
onditions ai(t,X) ∈ C1,1
t,x , bij(t,X) ∈ C1,2

t,x , gi(t,X, γ) ∈ C1,2,1
t,x,γ ,

X = (X1, . . . , Xn).

Refer to a random fun
tion S(t;X ;ω) de�ned on the same prob-

ability spa
e as a solution to (1) as a sto
hasti
 �rst integral of the

jump di�usion equations system (1) if the following 
ondition holds [1℄:

S(t,X(t,X0, ω)) = S(0, X0) (P−a.s) for all solution X(t) = X(t,X0, ω)
to system (1).

In 
ase when we 
onsider only one realization, a fun
tion s(t;X) =
S(t;X ; ω̃), ω̃ ∈ Ω is 
alled a �rst integral of the system (1).

A non-random fun
tion s(t;X) ∈ C1,2
t,x is a �rst integral of system (1)

if and only if it satis�es the 
onditions [1℄:

1.

∂s(t;X)

∂t
+
∂s(t;X)

∂Xi

[
ai(t;X)− 1

2
bj k(t;X)

∂bi k(t;X)

∂xj

]
= 0 ;

2. bi k(t;X)
∂s(t;X)

∂Xi
= 0, for all k = {1, . . . ,m};

3. s(t;X)− s
(
t;X + g(t;x; γ)

)
= 0 for all γ ∈ Rγ .

A generalized It�o�Wentzell formula. This result we obtained us-

ing by a Generalized It�o�Wentzell formula or It�o�Wentzell formula with

Jumps (2). Let us note: ∂Xi
F =

∂F (t,X)

∂Xi

∣∣
X=X(t,Y )

for any fun
tion

F (t,X(t, Y )).
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Generalized It�o�Wentzell formula [1,3℄: Let X(t, Y ) ∈ Rn
is a solu-

tion for SDE (1) and F (t,X(t,y)) is a sto
hasti
 pro
ess, F (t,X) ∈ C1,2
t,x .

Suppose that a random fun
tion F (t,X, ω) satis�es the equation

dtF (t,X) = Q(t,X)dt+Dk(t,X)dWk(t) +

∫

Rγ

G(t,X, γ)ν(dt, dγ)

under 
onditions: Q(t,X) ∈ C1,2
t,x , Dk(t,X) ∈ C1,2

t,x , G(t,X, γ) ∈ C1,2,1
t,x,γ .

Then it holds:

dtF (t,X(t, Y )) = Dk(t,X(t, Y )) + bi k(t,X(t, Y )) ∂Xi
F ) dWk(t)

+ (Q(t,X(t, Y )) + ai(t,X(t, Y )) ∂Xi
F + bi k(t,X(t, Y )) ∂Xi

Dk+

+ 2−1 bi k(t,X(t, Y ))bj k(t,X(t, Y ))∂2XiXj
F ) dt

+

∫

Rγ

G(t,X(t, Y ) + g(t,X(t, Y ), γ)) ν(dt, dγ)

+

∫

Rγ

[F
(
t,X(t, Y ) + g(t,X(t, Y ), γ)

)
− F (t,X(t, Y ))] ν(dt, dγ). (2)

Constru
tion of the di�erential equations system. The 
onditions

for a �rst integral above allow us to 
onstru
t a system of sto
hasti
 dif-

ferential Ito's equations (as well as non-sto
hasti
 di�erential equations

system) whi
h has a fun
tion s(t,X(t)) as a �rst integral [2℄. This is

proved be the statisti
al modeling of random pro
esses with invariants

[4℄.

Programmed 
ontrols with probability 1 for a dynami
al system.

Now we 
an apply our results to 
ontrol problem for dynami
al systems.

A programmed 
ontrol with probability 1 is 
alled a 
ontrol of

sto
hasti
 system whi
h allows to preserve a 
onstant value with prob-

ability 1 for the same fun
tion whi
h depends on this system's position

for any long time periods.

Consider the sto
hasti
 non-linear jump di�usion equations system:

dX(t) =
(
P (t;X(t)) +R(t;X(t)) · u(t;X(t))

)
dt

+B(t;X(t)) dW (t) +

∫

Rγ

Ξ(t;X(t); γ) ν(dt; dγ), (3)

where P (·), R(·) are given matrix fun
tions and B(·), Ξ(·) are given or

unknown ones. For su
h systems we 
onstru
t the programmed 
ontrol

u(t;X(t)) with probability 1 (PCP1) whi
h allows the system (3) to
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be on the given manifold {u(t;X(t))} = {u(0;X0} for ea
h t ∈ [0;T ],
T ≤ ∞. The programmed 
ontrol u(t;X(t)) is solution for the algebrai

system of linear equations.

Example. Let us 
onstru
t a PCP1 for a dynami
al system

dX1(t) =
(
X1(t) +X2(t) + e−t + u1(t,X(t))

)
dt+ b1(t,X(t))dW (t)

+

∫

Rγ

g1(t,X(t); γ) ν(dt, dγ),

dX2(t) =
(
X1(t)X2(t) + e−2t + u2(t,X(t))

)
dt+ b2(t,X(t)) dW (t)

+

∫

Rγ

g2(t,X(t); γ) ν(dt, dγ),

so a relation s(t,X(t) = X2(t)e
−2X1(t) = s(0, X(0)) ≡ s0 holds.

Then we obtain:

u1(t,X(t)) = − f1(t;X(t))

f2(t;X(t)) + 2 f3(t,X(t))X2(t)

+ 2 q2oo(t;X(t)) e−4X1(t) −X1(t)−X2(t)− e−t,

u2(t,X(t)) = − 2 f1(t;X(t))X2(t)

f2(t;X(t)) + 2 f3(t;X(t))X2(t)
−X1(t)X2(t)− e−2t,

b1(t,X(t)) = qoo(t,X(t)) e−2X1(t),

b2(t,X(t)) = qoo(t,X(t)) 2X2(t) e
−2X1(t),

g1(t;X(t); γ) = 0.5 ln
[
2 γ + e2X1(t)

]
−X1(t),

g2(t;X(t); γ) = 2X2(t) γ e
−2X1(t).

Fig. 1 shows one sample traje
tory of the random pro
ess X(t) (three

oordinates; horizontal line indi
ates values of the fun
tions s(tk, X(tk)).
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Fig. 1: Sample traje
tory of the random pro
ess X(t) (
oordinates, values of
the �rst integral)

4. T.A.Averina, E.V.Kara
hanskaya, K.A.Rybakov, Statisti
al analysis

of di�usion systems with invariants, Russian Journal of Numeri
al Anal-

ysis and Mathemati
al Modelling 33:1 (2018) 1�13.

Quality of servi
e estimation in tele
ommuni
ation

system with nonhomogeneous input �ow

Yu. S. Khokhlov

1

1
Mos
ow State University, Mos
ow, Russia, yskhokhlov�yandex.ru

The problem of quality of servi
e estimation is the most impor-

tant one in tele
ommuni
ation systems analysis. In our previous work

(Khokhlov, Lukashenko, Morozov [2℄) using the methodology proposed

in the paper of Norros [1℄ we propose some lower asymptoti
 estimate of

the over�ow probability of large bu�er when the input is a stream 
on-

sisting of two independent 
omponents: the fra
tional Brownian motion

and stable Levy motion with same Hurst parameters. Now we 
onsider

the 
ase of di�erent Hurst parameters.

We 
onsider the single-server �uid queue whi
h is fed by the following

input pro
ess: A(t) = mt+σ1BH1(t)+σ2Lα(t), t ≥ 0, where wherem >
0 is the mean input rate; BH1 = (BH1(t), t ∈ R) is a fra
tional Brownian
motion (FBM) with Hurst parameter H1, and Lα = (Lα(t), t ∈ R) is
symmetri
 α-stable Levy motion. Both pro
esses are self-similar with

indexes H1 and H2 = 1/α respe
tively. In what follows we assume that

H1 6= H2, 1/2 < H1, H2 < 1, σ1 = σ2 = σ, the pro
esses BH1 and Lα

© Khokhlov Yu.S., 2018
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are independent. We are interested in estimation of so-
alled over�ow

probability, i.e. the probability that stationary workload Q ex
eeds some

threshold level b, namely ε(b) := P [Q > b]. Denote H = min(H1, H2).
Our main result is the following estimate: for large b > 0

ε(b) ≥ C · b−(1−H)·α.

This resear
h is supported by Russian Foundation for Basi
 Resear
h,

proje
t 18-07-00678.
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al pro
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Network model of a 
omplex system is a 
omplete weighted graph

where nodes 
orresponds to the elements of the system and weights of

edges are given by some measure of 
onne
tion between them. Net-

work models are widely used in the sto
k market network analysis Man-

tegna [1℄, Boginski [2℄, Boginski [3℄. Nodes of the network model 
orre-

spons to the sto
ks of the sto
k market and weights of edges are given

by Pearson 
orrelations between �u
tuations of sto
k returns.

Di�erent network stru
tures whi
h 
ontain a key information of net-

work models are analyzed. Minimum spanning tree (MST) Mantegna [1℄,

planar maximally �ltered graph (PMFG) and market graph Boginski [2℄,

Boginski [3℄ are most popular network stru
tures in market network anal-

ysis.

Key problem is to identify these network stru
tures by observations

of sto
ks return �u
tuation. Traditional approa
h to the problem is to

© Koldanov P.A., 2018
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al
ulate Pearson 
orrelation for any pair of sto
ks and to apply 
orre-

sponding algorithms to network stru
tures identi�
ation. At the same

time the statisti
al properties of the algorithms su
h as unbiasedness,

invarian
e, optimality are unknown.

In the presentation the 
on
ept of random variables network is in-

trodu
ed. Random variables network is a pair (X, γ) , where ve
tor

X = (X1, X2, . . . , Xp) has multivariate distribution and γ = (γij =
γ(Xi, Xj)) is a measure of similarity between Xi and Xj . It is easy to

see that traditional approa
h is based on appli
ation of 
orresponding

algorithms of network stru
tures identi�
ation to Pearson 
orrelation

network.

In the presentation the sign random variables network Kalyagin [4℄ is

introdu
ed whi
h is based on measure P ((Xi−µi)(Xj−µj) > 0) - proba-
bility of sign 
oin
iden
e of two random variablesXi and Xj with respe
t

to their shift parameters. It is shown that if ve
torX = (X1, X2, . . . , Xp)
has multivariate ellipti
ally 
ontoured distribution ECD(µ,Λ, g) with
known µ then network stru
tures in Pearson 
orrelation network and

network stru
tures in sign 
orrelation network are 
oin
ide. The pro-


edures for network stru
tures identi�
ation in sign 
orrelation network

are 
onstru
ted. It is proved in Kalyagin [4℄ that these pro
edures have

invariant risk fun
tion with respe
t to fun
tion g.
In Koldanov [5℄ the 
ase of unknown µ is 
onsidered. The random

variable network with measure P ((Xi(t) −X i)(Xj(t) −Xj) > 0) is in-
vestigated. It is proved that if matrix of observations




X1(1)
X2(1)
. . .
Xp(1)

X1(2)
X2(2)
. . .
Xp(2)

. . .

. . .

. . .

. . .

X1(n)
X2(n)
. . .
Xp(n)




has matrix ellipti
ally 
ontoured distribution Gupta [6℄ then

P ((Xi − µi)(Xj − µj) > 0) = P ((Xi(t)−Xi)(Xj(t)−Xj) > 0)

∀t = 1, . . . , n; ∀i, j = 1, . . . , p, i 6= j.

It implies that network stru
tures in network model with measure

P ((Xi−µi)(Xj−µj) > 0) and network stru
tures in network model with
measure P ((Xi−Xi)(Xj−Xj) > 0) are 
oin
ide. Moreover it implies the

property of invariant risk fun
tion of pro
edures for network stru
tures

identi�
ation in sign 
orrelation network with respe
t to unknown µ.

A
knowledgements. This work is partially supported by RHRF

grant � 18-07-00524.
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From the point of view of sto
hasti
 analysis the Caputo and

Riemann�Liouville derivatives of order α ∈ (0, 2) 
an be viewed as (reg-
ularized) generators of stable L�evy motions interrupted on 
rossing a

boundary. This interpretation naturally suggests fully mixed, two-sided

or even multidimensional generalizations of these derivatives, as well as

a probabilisti
 approa
h to the analysis of the related equations. These

extensions are introdu
ed and some well-posedness results are obtained

that generalize, simplify and unify lots of known fa
ts. This probabilis-

ti
 analysis leads one to study a 
lass of Markov pro
esses that 
an be


onstru
ted from any given Markov pro
ess in Rd
by blo
king (or in-

terrupting) the jumps that attempt to 
ross 
ertain 
losed set of '
he
k-

points'. As examples we present wide 
lasses of generalized fra
tional

©Kolokoltsov V.N., 2018
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equations giving probabilisti
 interpretations of their solutions in terms

of the Dynkin type martingales and/or 
hronologi
al operator-valued

extensions of the Feynman�Ka
 formulas. Main ideas of the talk are

dis
ussed in more detail in the publi
ations given below.
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Mixed probability models are proposed for statisti
al regularities in

the behavior of su
h 
hara
teristi
s of rainfall data as the duration of
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a wet period, maximum daily pre
ipitation within a wet period and to-

tal pre
ipitation volume per a wet period. The base for the models is

the generalized negative binomial (GNB) distribution. The results of

�tting the GNB distribution to real data are presented and demonstrate

ex
ellent 
on
ordan
e of the GNB model with the empiri
al distribu-

tion of the duration of wet periods measured in days. Based on this

GNB model, asymptoti
 approximations are proposed for the distribu-

tions of the maximum daily pre
ipitation volume within a wet period

and of the total pre
ipitation volume for a wet period. The asymptoti


distribution of the maximum daily pre
ipitation volume within a wet

period turns out to be a tempered s
ale mixture of the gamma distribu-

tion in whi
h the s
ale fa
tor has the Weibull distribution, whereas the

asymptoti
 approximation for the total pre
ipitation volume for a wet

period turns out to be the generalized gamma (GG) distribution. Both

approximations appear to be very a

urate. These asymptoti
 approxi-

mations are dedu
ed using limit theorems for statisti
s 
onstru
ted from

samples with random sizes having the generalized negative binomial dis-

tribution. Based on these models, two approa
hes are proposed to the

de�nition of abnormally extremal pre
ipitation. These approa
hes im-

prove the existing ones [1℄, [2℄, [3℄. The �rst approa
h to the de�nition

(and determination) of abnormally extreme pre
ipitation is based on the

distribution of the maximum daily pre
ipitation of the form of a tem-

pered s
ale mixture of the gamma distribution in whi
h the s
ale fa
tor

has the Weibull distribution. The analyti
 and asymptoti
 properties of

this distribution are dis
ussed. A

ording to the �rst approa
h, a daily

pre
ipitation volume is 
onsidered to be abnormally extremal, if it ex-


eeds a 
ertain (pre-de�ned) quantile of this distribution. The se
ond

approa
h is based on that the total pre
ipitation volume for a wet period

has the GG distribution. This model is dedu
ed as a version of the law of

large numbers for random sums in whi
h the number of summands has

the GNB distribution. Hen
e, the hypothesis that the total pre
ipitation

volume during a 
ertain wet period is abnormally large at a given time

horizon 
an be formulated as the homogeneity hypothesis of a sample

from the GG distribution. Two equivalent tests are proposed for testing

this hypothesis. One of them is based on the beta distribution whereas

the se
ond is based on the Snede
or�Fisher distribution. Both of these

tests deal with the relative 
ontribution of the total pre
ipitation volume

for a wet period to the 
onsidered set (sample) of su

essive wet periods.

Within the se
ond approa
h it is possible to introdu
e the notions of rel-

atively abnormal and absolutely abnormal pre
ipitation volumes. The
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results of the appli
ation of this test to real data are presented yielding

the 
on
lusion that the intensity of wet periods with abnormally large

pre
ipitation volume in
reases.
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The overwhelming majority of modern life aspe
ts, from household

applian
es to publi
 administration, have be
ome so 
omplex that the

determinnation of performan
e 
riteria by deterministi
 analysis is vir-

tually impossible. Thus, all sorts of indi
es and ratings are be
oming

more 
ommon allowing to make de
isions qui
kly where a study would

take years and require signi�
ant �nan
ial and material resour
es. The


reation of ratings and indexes is normally based on the separation of

the model parameters into two 
lasses. The �rst 
lass in
ludes param-

eters that fa
ilitate the fun
tioning of the target obje
t and positively

a�e
t the pro
ess (p-fa
tors); the se
ond 
lass in
ludes parameters that
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inhibit and negatively a�e
t the fun
tioning (n-fa
tors). Naturally, the

fun
tioning of the system under investigation mostly depends not on the

expli
it values of n- and p-fa
tors, but rather on their ratio. At the

same time, a large dis
repan
y between the values of the fa
tors usually

indi
ates either ex
essive 
osts of ��ghting negative in�uen
e� or under-

estimated negative impa
t. Thus, in order to make the system balan
ed,

it is reasonable to strive to the ratio of the n-fa
tor to the p-fa
tor equal
to unity. However, the statements of the problem exist where the preva-

len
e of the p-fa
tor over the n-fa
tor is reasonable to a
hieve despite the

osts. For example, in 
ase of se
urity or reliability investigation. In this

situations, the ratio of the negative to the positive fa
tor tends to zero,

and the ratio of the p-fa
tor to the sum of the p- and n-fa
tors and its


loseness to unity should be 
onsidered instead in order to understand

the 
loseness to the solution.

Denote by λ and µ respe
tively the n- and p-fa
tors of the model.
Consider the balan
e index ρ = λ/µ and the advantage index

π =
µ

µ+ λ
=

1

1 + ρ
.

Examples of the balan
e and advantage indi
es are found in all kinds of

areas of knowledge from demography to simulation of emergen
ies.

Over the 
ourse of time, n- and p-fa
tors, and hen
e the bal-

an
e/advantage indi
es, undergo 
hanges. This is 
aused by the instabil-

ity of the environment in whi
h the fun
tioning takes pla
e � e
onomi


development, the politi
al system, produ
tion te
hnologies, population

preferen
es, et
., � 
hange. For this reason, it makes sense to 
onsider

not only the instantaneous values of the fa
tors and indi
es, but also

the 
orresponding fun
tions of time: the n-pro
ess λ(t), p-pro
ess µ(t),
balan
e pro
ess

ρ(t) =
λ(t)

µ(t)

and the pro
ess of advantage

π(t) =
µ(t)

µ(t) + λ(t)
.

The impossibility of a thorough study of the �states of nature�, in

whi
h the system under investigation operates, and inevitable errors in

measurements are the prerequisites for 
onsidering fa
tors, and hen
e in-

di
es, as random variables. Furthermore, one must take into a

ount that
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global 
hanges in the environment rarely o

ur, therefore, the laws that

a�e
t the values of the fa
tors 
an be 
onsidered un
hangeable within

the framework of a parti
ular model. Hen
e, the distributions of the


onsidered random variables should be assumed to be given a priori.

The above reasoning leads to the appli
ation of the Bayesian method

to the balan
e models.

In the report, a number of implementation examples for the balan
e

and advantage indi
es from spe
i�
 areas of knowledge are provided. The

analyti
al results for one-dimensional distributions of balan
e pro
esses

for models with a priori gamma-type distributions are presented.
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A retrial queuing system with a single server is investigated in this

paper. The server is subje
t to random breakdowns. The results are pro-

vided by the help of re
ursive numeri
al 
al
ulations (B�er
zes and Sztrik

and T�oth and Nazarov [1℄, Kim [2℄, Wang and Zhao and Zhang [5℄). The

number of sour
es of 
alls is �nite and 
ollision (Nazarov and Kva
h and

Yampolsky [3℄, T�oth and B�er
zes and Sztrik and Kva
h [4℄) 
an take

pla
e. The failure of server blo
k the system's operation therefore the

arriving 
ustomers 
an not enter the system, meaning that those 
alls are

lost. All the random variables in
luded in the model 
onstru
tion are as-

sumed to be generally distributed and independent of ea
h other. From

the Kolmogorov system equations a re
ursive algorithm has been derived

for non-blo
king 
ase ([3℄). As the novelty of this analysis, this algorithm

is modi�ed to the blo
king 
ase, as well. Various �gures represent the

impa
t of blo
king phenomenon on the main performan
e measures like

mean and varian
e of number of 
ustomers in the system, mean and

varian
e of response time, mean and varian
e of time a 
ustomer spent

in servi
e, mean and varian
e of sojourn time in the orbit.
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Sin
e the end of the XX-th 
entury the study of random graphs with

node degrees being independent identi
ally distributed random variables

following a 
ommon power-law distribution has gained steam. The rea-

son was quite obvious: observations of real-world 
omplex 
ommuni
a-

tion networks showed (see e.g. Faloutsos et
. [1℄, Hofstad [2℄) that these
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models 
ould be used for their des
ription. However, with networks'

growth it has be
ome obvious that it is not enough to know the node

degree distribution and its parameters to get a good-�t model of a real

network, but there are some numeri
al 
hara
teristi
s that have to �t in

also.

In this work we 
onsider 
on�guration graphs introdu
ed by Bol-

lobas [3℄ with the following power-law node degree distribution (see Re-

ittu and Norros [4℄)

P{ξ = k} = k−τ − (k + 1)−τ , τ > 1, k = 1, 2, . . . ,

where ξ is a random variable equal to the degree of an arbitrary node.

Node degrees form in
ident semiedges numbered in an arbitrary order

and the graph is 
onstru
ted by an equiprobable joining of all semiedges

one to another to form links. Obviously, su
h 
onstru
tion supposes the

sum of node degrees to be even, so if otherwise one semiedge is added to

an equiprobably 
hosen node to form a la
king 
onne
tion. Con�guration

model allows loops and multiple links in its graph.

Re
ent works (see e.g. Bia
oni and Barabasi [5℄, Pavlov [6℄) that the

node degree distribution 
an not only 
hange with the growth of a net-

work size but even be random, whi
h means that the graph is 
onstru
ted

in a so 
alled random environment. Thus, in our work we 
onsider two

types of 
on�guration graphs. The �rst one with the parameter τ of

the distribution (1) being a �xed value and the se
ond one with the

values of τ being determined separately for ea
h node from either uni-

form or trun
ated normal distribution on some prede�ned interval (a, b),
1 < a < b < ∞, so we 
an say that the graph is formed in random

environment.

Along with the node degree distribution des
ription of real-world


omplex networks in
ludes studying various numeri
al 
hara
teristi
s

that show both lo
al and global network properties. The best known

among them are global and lo
al 
lustering 
oe�
ients and assortativity


oe�
ient.

Assortativity 
oe�
ient A is used for estimating 
orrelation between

the degrees of in
ident nodes, wherefore it is proposed (see e.g. New-

man [7℄) to use Pearson 
orrelation 
oe�
ient for this purpose. Obvi-

ously, if nodes with high degrees 
onne
t mostly to nodes with also high

degrees, then the assortativity 
oe�
ient A will be positive and the net-

work is 
alled assortative, otherwise the 
oe�
ient will be negative and

a 
orresponding network is 
alled disassortative.
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For estimating the degree of graph 
lusterization we used the fol-

lowing global CG and network average CL 
lustering 
oe�
ients (see

Newman [7℄):

CG =
3× number of graph triangles

number of 
onne
ted triples of nodes

,

CL =
1

N

N∑

i=1

Ci,

where

Ci =
number of triangles 
onne
ted to node i

number of triples 
entered on node i

,

where a "triple" means a single node 
onne
ted by links to two others, Ci

is lo
al 
lustering 
oe�
ient (Newman [7℄). Sin
e 
on�guration graphs

may have loops and multiple links, in 
al
ulating 
lustering 
oe�
ients

loops are not 
ounted and multiple links are 
onsidered as one.

The results were obtained by simulation te
hnique. We 
onsidered


on�guration graphs with the number of nodes 100 < N < 10000 in two

ases of the node degree distribution: with �xed values of 1.01 ≤ τ ≤ 2.5
and random environment, when τ was either uniformly distributed on a
prede�ned interval [a, b] or was a random variable following a trun
ated

normal distribution on the same interval (a, b) with the expe
tation of

ξ at ea
h interval (a, b) being de�ned as the middle value (a+ b)/2 and
the standard deviation σ = (b−a)/6 in a

ordan
e with the three-sigma
rule. The 
onsidered intervals (a, b) were the following: (1, 2), whi
h

orresponds to a well-known property of 
ommuni
ation networks (Hof-

stad [2℄), (2, 3), 
onne
ted with forest �re modeling (Leri and Pavlov[8℄)
and (1, 3) as a generalization of the �rst two. Based on the obtained

results we derived regression dependen
ies of 
oe�
ients A, CG and CL

on the graph size N and the parameter of the node degree distribution

τ in the �rst 
onsidered 
ase, when τ was �xed. The general form of the

obtained equations looked like the following (here and in what follows

CF denotes either of the three 
onsidered 
oe�
ients):

CF = c ·N−d+h/τ ,

where the 
oe�
ient c was negative in the relation for assortativity 
o-

e�
ient A, whi
h means that 
on�guration graphs are to be used for

modeling only disassortative networks, and for 
lustering 
oe�
ients CG

and CL c was positive. The 
oe�
ients d and h were always positive.

Determination 
oe�
ients for all models were greater than 0.95.
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In the 
ase of random environment we also obtained regression rela-

tions of the 
oe�
ients A, CG and CL on the graph size N . The general

form of these equations was derived to be as follows:

CF = p ·N−q,

where the 
oe�
ient p was negative in the relation for the 
oe�
ient A
and positive for CG and CL. Coe�
ient q was positive in all 
ases and

R2 ≥ 0.97 for all models.
We believe that these results will be helpful in 
onstru
ting models of

spe
i�
 networks in the form of 
on�guration graphs with the power-law

node degree distribution (1) by 
hoosing the best �tting values of the

parameter τ or by 
hoosing the distribution of a random τ �tting the real
values of the assortativity and 
lustering 
oe�
ients of these networks.

Moreover, we 
ompared the values of A, CG and CL 
al
ulated for real-

world networks and given by Newman [7℄ with the same 
oe�
ients for

the 
orresponding 
on�guration graphs of the same size obtained from

our equations. The results showed that for modeling of the Internet

on AS-level 
on�guration graphs with 1.02 ≤ τ ≤ 1.17 give the best �t,
while for modeling of some so
ial networks the value of τ must be greater
than 2.
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Let X1, X2, . . . , Xn be independent random variables on a 
om-

mon probability spa
e (Ω,F ,P) with EXk = 0, EX2
k = σ2

k, and

B2
n =

∑n
k=1 σ

2
k > 0. Denote

µk(z) = EX3
k1(|Xk| < z), λk(z) = z · EX2

k1(|Xk| > z), z > 0,

Fn(x) = P(X1 +X2 + . . .+Xn < xBn), ∆n = sup
x∈R

|Fn(x)− Φ(x)|,

where Φ stands for the standard normal distribution fun
tion. Let G
denote the set of all nonde
reasing fun
tions g : R+ → R su
h that

x/g(x) is nonde
reasing for x > 0. We prove that for every ε ∈ (0;+∞],

γ > 0 there exist 
onstants C(ε, γ), C̃(ε, γ) depending only on ε, γ su
h
that

∆n ≤ C1(ε, γ)

B2
ng(Bn)

· Ln,1(g, ε, γ), ∆n ≤ C2(ε, γ)

B2
ng(Bn)

· Ln,2(g, ε, γ),

∀g ∈ G,

where

Ln,1(g, ε, γ) = sup
0<z<εBn

g(z)

z

(∣∣∣∣∣

n∑

k=1

µk(z)

∣∣∣∣∣+
n∑

k=1

λk(z)

)
,

Ln,2(g, ε, γ) =
g(εBn)

εBn

∣∣∣∣∣

n∑

k=1

µk(εBn)

∣∣∣∣∣ + sup
0<z<εBn

g(z)

z

n∑

k=1

λk(z).
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The obtained inequalities improve and generalize those in [1�4℄ and, a
-


ording to Zolotarev's [5℄ 
lassi�
ation, 
an be 
alled natural 
onvergen
e

rate estimates in the Lindeberg�Feller theorem.

Let X1, X2, . . . , Xn have the same distribution fun
tion F (x). For
i = 1, 2 denote asymptoti
ally exa
t 
onstants, whi
h are lower bounds

for Ci(ε, γ):

CAB,i(g, ε, γ) = sup
F

lim sup
n→∞

∆n(F )

Ln,i(F, g, ε, γ)
,

CAE,i(g, ε, γ) = lim sup
n→∞

sup
F

∆n(F )

Ln,i(F, g, ε, γ)
,

CAE,i(g, ε, γ) = lim sup
ℓ→0

sup
n,F :Ln,i(F,g,ε,γ)=ℓ

∆n(F )

ℓ
,

CAE,i(g, ε, γ) = lim sup
ℓ→0

lim sup
n→∞

sup
F :Ln,i(F,g,ε,γ)=ℓ

∆n(F )

ℓ
,

C∗AE,i(g, ε, γ) = sup
ℓ>0

lim sup
n→∞

sup
F :Ln,i(F,g,ε,γ)=ℓ

∆n(F )

ℓ
,

where g ∈ G, ε ≤ 1, γ > 0, i = 1, 2. We provide lower bounds for ea
h

of the above asymptoti
ally exa
t 
onstants.
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Abstra
t. Random e�e
ts of frailty 
omponents are used in survival

models to enter the unknown risk fa
tors. But in many 
ases, there

may be a spatial 
orrelation between the survival times. In this 
ase,

a Gaussian random �eld is usually 
onsidered for random e�e
ts while

entering this 
omponent to the model 
onvert survival model to spatial

survival model. But the 
onsideration of a Gaussian random �eld for

spatial random e�e
ts sometimes not 
orrespond to reality. In this paper,

by 
onsidering a 
losed skew Gaussian random �eld for random e�e
ts

we propose a new 
lass of spatial survival models. In a simulation study,

we will show that the deviation from the Gaussian assumption random

e�e
ts have an undesirable e�e
t on parameters estimation in the spatial

survival model, while the use of the 
losed skew Gaussian random e�e
ts

provides more a

urate parameters estimates. Finally, the introdu
ed

model is applied to explore the pattern of infe
ting Cer
osporiose in

olive trees.

Keyword Frailty, Spatial Survival Data, Closed Skew Gaussian Ran-

dom Field, Cer
osporiose.

Introdu
tion. Survival analysis has a long history in medi
al studies

and reliability in engineering Cox and Oakes [1℄. It is usually assumed

in survival models that the failure times of the subje
ts are independent.

while in many 
ases this assumption is not realisti
 in some appli
ations

and the failure times are spatially 
orrelated . Many S
ienti�
 resear
her

Biggeri et al [2℄ and Ramsay et al [3℄ have shown that in the presen
e

of spatial 
orrelation in survival data and ignoring it in modeling and

analyzing survival data 
an lead to false and misleading results. Random

e�e
ts are usually a latent 
omponent of the survival data, that 
an be

a
hieved by re
ognizing the spatial 
orrelation and 
onsidering through

a spatial survival model to yield results 
onsistent with reality. The

analysis of survival models with spatial random e�e
ts has a history of

© Motarjem K., Mohammadzadeh M., 2018
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Fig. 1: The lo
ations of trees in the garden and time disease, 
ir
le areas are

proportional to observations and pluses represent 
ensored data

less than two de
ades. Most spatial survival models are introdu
ed by

resear
hers are suitable for latti
e data that the spatial 
orrelation exists

between the areas 
ontaining survival data. But in geostatisti
al 
ases,

the analysis of survival models are 
ompli
ated in parameter estimation.

Motarjem et al [4℄ introdu
ed a spatial survival model for analysing

geostatisti
al survival data, where a Gaussian random �eld is used for


onsidering the spatial random e�e
ts. However, due to the existen
e

of skewness in survival data, the Gaussian assumption of random e�e
ts

may not be realisti
. In this paper, by 
onsidering a 
losed skew Gaussian

random �eld for spatial random e�e
t, a new model for skew spatial

random e�e
ts is proposed, the e�e
t of this deviation on the estimation

of model parameters is investigated.

Appli
ation. In this study, Cer
orpiose disease infestation in a gar-

den with an area of 5000 m2
in whi
h 173 olive planets exist, is studied

daily for two months. Age (in years), type (two type) and height (in

meter) of ea
h olive tree 
onsidered as 
ovariates. In the 
ase of having

tree disease, the disease time noted. By the end of the study, 85 trees

have been infe
ted and the others were right 
ensored. Consequently, we

have 51 per
ent right 
ensoring. The lo
ation of trees showed in Fig. 1

while the infe
ted trees demonstrated by 
ir
les and the others by plus

signs (+). The area of ea
h 
ir
le relates to infe
ting time in a way that

smaller 
ir
les indi
ate earlier infe
tion and larger 
ir
les depi
t later

infe
tion.
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Table 1: Parameter estimates of Cox and Frailty models �tted to olivegrown-

ing data

Proportional hazards Frailty

Par. Est. SE Est. SE

β1 -0.381 0.129 -0.600 0.192

β2 -0.662 0.156 -1.026 0.221

β3 0.351 0.119 0.477 0.181

ln(L̂) -396.667 -340.046

AIC 799.334 682.092

Table 2: Parameter estimates of proposed model with di�erent 
ovarian
e

fun
tions

Exponential Gaussian Spheri
al

Par. Est. SE Est. SE Est. SE

β1 -0.592 0.014 -0.573 0.017 -0.503 0.021

β2 -1.402 0.059 -1.203 0.075 -1.011 0.089

β3 0.624 0.073 0.602 0.082 0.589 0.102

a 0.999 0.083 0.973 0.098 1.121 0.108

σ2
0.307 0.039 0.296 0.052 0.213 0.083

δ 0.512 0.084 0.419 0.102 0.408 0.106

ln(L̂) -293.084 -301.209 -304.284

AIC 598.168 614.418 620.568
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The usefulness of 
on
ept of lo
al asymptoti
 normality (LAN) of a

family

of probability distributions in problems of theory of asymptoti
 esti-

mation and hypothesis testing has been demonstrated in a number of

papers. LAN is a property of a sequen
e of statisti
al models, whi
h

allows this sequen
e to be asymptoti
ally approximated by a normal lo-


ation model, after a res
aling of the parameter. The notation of LAN

was introdu
ed by Le Cam [1℄ in the 
ase of independent and identi
ally

distributed sampling from a regular parametri
 model. Several exten-

sions of property of LAN for dependent and nonidenti
ally distributed

sampling s
hemes has been established in statisti
al literature. In the

papers [2-4℄ the 
on
ept of LAN extended in the 
ompeting risks model

(CRM) under random 
ensoring of observations from the right, both

sides and by nonobservation intervals. In this paper we dis
uss property

of LAN in the CRM by progressively hybrid 
ensored data.

In the CRM our interest is fo
used on random variable (r.v.) X
with values from measurable spa
e (X ,B) and pairwise disjoint events

(
A(1), ..., A(k)

)
, where for a �xed k, P (

k⋃
i=1

A(i)) = 1. In survival anal-

ysis X means survival time of obje
t (individual, physi
al system)

exposed to k 
ompeting risks and failing in 
ase one of the events

A(i), i = 1, k. The pairs (X,A(i)), i = 1, k, denote the time and

reason the obje
t fails. Let

{
(Xj , A

(1)
j , ..., A

(k)
j ), j ≥ 1

}
be indepen-

dent 
opies of ensemble (X ;A(1), ..., A(k)) during the experiments un-

der homogenous 
onditions. Let δ
(i)
j = I(A

(i)
j ) is a indi
ator of event

A
(i)
j . Every ve
tor ζj = (Xj , δ

(1)
j , ..., δ

(k)
j ) indu
es a statisti
al model

with sample the spa
e Y = X × {0, 1}(k) and σ - algebra C of sets

of the from B × D1 × ... × Dk, where B ∈ B and Di ⊂ {0, 1},
i = 1, k. Suppose that distribution of the ve
tor ζj on (Y, C) de-

pends on an parameter θ = (θ1, ..., θs) ∈ Θ: Qθ(x, y
(1), ..., y(k)) =

© Nurmukhamedova N.S., 2018
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Pθ(X < x, δ(1) = y(1), ..., δ(k) = y(k)), x ∈ R1, y(i) ∈ {0, 1}. Let

H(x; θ) = Pθ(X < x), H(i)(x; θ) = Pθ(X < x, δ(i) = 1), i = 1, k.
Obvious that H(1)(x; θ) + ... + H(k)(x; θ) = H(x; θ).Let H(i)(x; θ) are

absolutely 
ontinuous, h(i)(x; θ) = ∂H(i)(x;θ)
∂x , i = 1, k and h(x; θ) =

h(1)(x; θ) + ... + h(k)(x; θ). Let X1n < X2n < ... < Xnn are order

statisti
s of subsample {X1, ..., Xn} and {δ(1)jn , ..., δ
(k)
jn , j = 1, n} indi
ator

fun
tions in sample ζ(n) = (ζ1, . . . , ζn) 
orresponding to order statisti
s

{Xjn, j = 1, n}. Denote , where ζjn = (Xjn, δ
(1)
jn , ..., δ

(k)
jn ). Throughout

(Y(n),U (n), Q
(n)
θ ) denote the sequen
e of statisti
al experiments, indu
ed

by (Z(1), ..., Z(n)). Now we 
onsider the experimental situation when the


ompeting risks data is random hybrid 
ensored from the right. A hy-

brid 
ensoring, whi
h is the mixture of type I and II 
ensoring, 
an be

used to save resour
es. If the experiment stops either at a �xed time

T ∈ R, the experiment is 
alled type I (or (n, T )) 
ensoring model or

is 
ontinues until r(0 < r < n) failures o

ur, the experiment is 
alled
type II (or (n, r)) 
ensoring model. If the experiment is 
ontinues until
either r failures o

ur or test duration T is rea
hed, whi
hever 
omes

�rst, we 
all the experiment a hybrid (or (n, r, T )) 
ensoring model. In

onsidered 
ompeting risks situation the hybrid 
ensored CRM we de-

note as (n, r, T )k. In (n, r, T )k-model 
ompeting risks data is 
ensored

from the right by r.v. Trn = min {T,Xrn}. In (n, r, T )k-model a number
τ of observed data is r.v.:

τ =

{
sup{m : Xmn ≤ T, m ≤ r}, if X1n ≤ T,

0, otherwise.

Thus the observed data

(
Z(τ), τ

)
have a joint density fun
tion

pn

(
Z(τ), θ

)
=

n!

(n− τ)!

τ∏

l=1

k∏

i=1

{[
h(i)(xin; θ)

]y(i)
l n

}
[1−H(trn; θ)]

n−τ×

×I (x1n < ... < xrn, τ ≤ r) ,

where trn = min
{
xrn, T

}
.

Let

l(τ)n (u) =
pn(Z

(τ); θn)

pn(Z(τ); θ)

is a likelihood ratio statisti
s, where θn = θ + un−1/2 ∈ Θ and θ, u
held �xed. Under 
ertain regularity 
onditions on underlying distribu-

tion family and on stopping time τ the LAN property of experiment is
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established:

l(τ)n (u) = exp
{
u (I(θ))1/2 ∆(τ)

n − u2

2
I(θ) +Rn(u)

}
,

where Rn(u)
Qθ→ 0, L(∆(τ)

n /Qθ) → L(ξ), n → ∞, ξ
D
=N(0, 1) and I(θ) is

Fisher information.
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We give a review of the basi
 fa
ts about the iterated Brownian

motion

µ1
µ2
I(t) = Bµ1

1 (|Bµ2

2 (t)|) where Bµj

j , j = 1, 2 are two independent

Brownian motions with drift µj . We study the last zero 
rossing of

µ1
µ2
I(t)

and for this purpose we derive the last zero-
rossing distribution of the

drifted Brownian motion.

We derive also the joint distribution of the last zero 
rossing before

t and of the �rst passage time through the zero level of a Brownian

motion with drift µ after t. All these results permit us to derive expli
it

© Orsingher E., 2018
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formulas for

I
µT0 = sup{s < max0≤z≤t |B2(z)| : Bµ

1 (s) = 0}. Also the

iterated zero-
rossing

µ1T 0,µ2T 0,t is analyzed and extended to the 
ase

where the level of nesting is arbitrary.

The iterated Brownian motion has been examined from many view

points in
luding its 
onne
tion with fra
tional equations and some prob-

abilisti
 properties as the iterated logarithm law.
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Current theoreti
al studies aimed at studying e�e
ts of time-lags on

the state and behavior of various systems, began in the middle of the

twentieth 
entury [1, 2℄. But they began to develop espe
ially inten-

sively only re
ently that is related to pra
ti
al needs. Among the �rst

appli
ations of su
h studies were methods of solving problems of 
on-

trol, and then tasks of biology, me
hani
s, physi
s, 
hemistry, medi
ine,

e
onomi
s, atomi
 energy, information theory et
.

Mathemati
al models for des
ribing phenomena in these areas are


onstru
ted in the form of fun
tional-di�erential equations (FDEs) (see

[3, 4℄ et al.) and various spe
ial forms of FDEs su
h as retarded ordinary

and partial di�erential equations [5�7℄ in
luding delay and neutral di�er-

ential equations (DDEs, NDEs) as well as integro-di�erential equations

(IDEs) [8�11℄.

At present, a 
onsiderable interest is being paid to sto
hasti
 FDEs

(SFDEs) of di�erent types [12�15℄. As it happened earlier for determin-

isti
 systems, the development of resear
h methods for su
h equations

be
ame important for theory and pra
ti
e. Analysis of SFDEs 
auses sig-

ni�
ant di�
ulties, sin
e these SFDEs that arise in many appli
ations,

© Poloskov I.E., 2018
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an not be solved exa
tly. Therefore, the a
tual task is the development

of e�e
tive both dire
t, i.e., obtaining realizations of strong solutions,

and indire
t, i.e., 
omputation of statisti
al 
hara
teristi
s, approximate

analyti
al and numeri
al algorithms for analyzing systems of SFDEs.

Now there is a rather wide 
lass of methods for solving determin-

isti
 FDEs [16, 17℄. Approximate algorithms of dire
t numeri
al inte-

gration of SFDEs. of various types (for example [18�20℄) are based on

these s
hemes and spe
ial 
ompound methods for numeri
al solution of

sto
hasti
 ordinary di�erential equations (SODEs) [21�23℄.

But there are some forms of SODEs that don't require a very 
ompli-


ated s
heme to be examined. One of su
h the forms is a system of linear

SODEs ex
ited by additive and multipli
ative white noises. In this 
ase

deterministi
 ODEs for the �rst and senior (
entral) moment fun
tions


an be obtained exa
tly in the 
losed form, i.e., an ODE for a moment

fun
tion of a 
urrent order does not 
ontain moment fun
tions of higher

orders. If we now turn to linear sto
hasti
 ordinary DDEs (SODDEs)

with the same input �u
tuations, then we formally will be in a similar

situation with respe
t to a 
losure of the equations for the moment fun
-

tions as above. The di�eren
e is in the fa
t that these equations will be

ODDEs. To obtain ODEs for senior moment fun
tions without delays,

we apply a modi�
ation of our s
heme [24�26℄ 
ombining the 
lassi
al

method of steps and extension of the system state spa
e (MSESP).
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The 
hara
teristi
 fun
tion of the fra
tional stable law has the form

q̃(t, α, β, θ) = Eβ(ψ(t, α, θ)), (1)

where Eβ(z) is the Mittag�Le�er fun
tion

Eβ(z) =

∞∑

n=0

zn

Γ(1 + βn)
, β > 0, z ∈ C,

ψ(t, α, θ) = −|t|α exp{−i(παθ/2) sign t}, and the parameters are varying
within the limits

0 < α 6 2, 0 < β 6 1, |θ| 6 min(1, 2/α− 1).

The inverse Fourier transformation of the 
hara
teristi
 fun
tion (1)

was 
arried out for obtaining of the integral representation of the density

of the fra
tional stable law

q(x, α, β, θ) =
1

2π

∞∫

−∞

e−itx q̃(t, α, β, θ) dt.

As a result for the density of the fra
tional stable law the following

theorem is valid

Theorem 1. For any allowed value of the parameters (α, β, θ), su
h
as 0 < α/β 6 2, |θ| 6 min(1, 2β/α − 1), the density of the fra
tional

stable law q(x, α, β, θ) has the form

q(x, α, β, θ) =
sin(πβ)

πβ

∞∫

0

y−1/αg(x y−1/α, α/β, θ)

y2 + 2 y cos(πβ) + 1
dy, (2)

β 6= 1, x 6= 0,

q(x, α, 1, θ) = g(x, α, θ), β = 1,

© Saenko V.V., 2018
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where g(x, ν, θ) is the density of the stri
tly stable law (see Zolotarev [1℄),

g(x, ν, θ) =
ν

π|ν − 1|

π/2∫

−πθ∗/2

exp
{
−|x| ν

ν−1U(ψ, ν, θ∗)
}
U(ψ, ν, θ∗)|x| 1

ν−1 dψ,

ν 6= 1,

g(x, 1, θ) =
cos(πθ/2)

π(x2 − 2x sin(πθ/2) + 1)
, g(x, 1,±1) = δ(x± 1).

Here θ∗ = θ signx,

U(ψ, ν, θ) =

(
sin
(
ν
(
ψ + π

2 θ
))

cosψ

) ν
1−ν

cos
(
ψ(ν − 1) + π

2 νθ
)

cosψ
.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.2

0.4
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q
(x

,
,

,
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Fig. 1: The densities of the fra
tional stable laws for the values of the param-

eters α = 0.6, β = 0.8, θ = 1 (dotted 
urve), θ = 0.5 (dashed line),

θ = 0 (solid 
urve)

The results of 
al
ulation of the densities are shown on the Fig. 1.

The 
urves are densities obtained by Eq. (2) and the dots are results
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obtained by Monte Carlo method. For 
al
ulation of the density by

Monte Carlo method the following formula is used

X(α, β, θ) =
Y (α, θ)

(S(β, 1))β/α
,

where random variables Y (α, θ) and S(β, 1) are distributed a

ording to
laws g(x, α, θ) and g(y, β, 1) respe
tively.

We 
an obtain expression for the 
umulative distribution fun
tion

Q(x, α, β, θ) using the Theorem 1. As a result the 
umulative distribu-

tion fun
tion has the form

Q(x, α, β, θ) =
sin(πβ)

πβ

∞∫

0

G(xy−1/α, α/β, θ)

y2 + 2y cos(πβ) + 1
dy, x > 0,

0 < α/β 6 2, |θ| 6 min(1, 2β/α− 1) and G(x, ν, θ) is 
umulative distri-
bution fun
tion of the stri
tly stable law (Zolotarev [1℄)

G(x, ν, θ) = 1− 1− θ∗

4
(1 + sign(1− ν))

+
sign(1− ν)

π

π/2∫

−πθ∗/2

exp
{
−|x| ν

ν−1U(ψ, ν, θ∗)
}
dψ, ν 6= 1

G(x, 1, θ) =
1

2
+

1

π
arctan

(
x− sin(πθ/2)

cos(πθ/2)

)
.

The 
ase x < 0 
an be obtained from the relation

Q(−x, α, β, θ) = 1−Q(x, α, β,−θ).
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Thresholding rules in the models

with non-Gaussian noise
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Many modern methods of analyzing and pro
essing signals and im-

ages are based on the possibility to e
onomi
ally represent the fun
tion

of a useful signal in a 
ertain basis. For a fairly wide 
lass of fun
tions,

this possibility is a
hieved with the help of wavelet bases, whi
h ensure

adaptation to fun
tions that have di�erent degrees of regularity in dif-

ferent regions. This makes it possible to e�
iently separate the noise

from the useful signal and to remove it using simple thresholding pro
e-

dures, that is, zeroing out a part of the wavelet 
oe�
ients, whi
h are

assumed to 
ontain mostly noise. The 
lassi
al model of observations

assumes the presen
e of white Gaussian noise. In this 
ase, the proper-

ties of the estimates obtained by threshold pro
essing are well studied,

and the order of the mean-square risk for various 
lasses of fun
tions is


al
ulated [1℄. Some results have also been obtained that des
ribe the

asymptoti
 behavior of the mean-square risk estimate, 
onstru
ted from

noisy observations [2℄.

This report 
onsiders a wider 
lass of possible noise distributions, in

parti
ular, distributions having heavier tails than Gaussian distribution.

For this 
lass, the values of the universal threshold in the methods of

hard and soft thresholding are 
al
ulated, its asymptoti
 properties are

studied and it is shown that the order of the mean-square risk is 
lose

to the minimum up to the logarithm of the number of observations in

a power depending on the distribution parameters [3℄. Also within the

framework of the model under 
onsideration, the strong 
onsisten
y and

asymptoti
 normality of the mean-square risk estimate for the universal

threshold pro
essing are proved under the assumption that the signal

fun
tion belongs to the Lips
hitz 
lass.

A
knowledgements. This resear
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sian Foundation for Basi
 Resear
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t No. 16�07�00736).
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Robust minimax estimation of lo
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favorable distributions under asymmetry
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This talk is partially a review of basi
 former results on the appli
a-

tion of Huber's minimax approa
h to robust estimation of lo
ation with

the 
orresponding least favorable (informative) distributions both in the

univariate and multivariate 
ases [1-3℄, and partially it is a presentation

of several re
ent results and novel problem settings on these issues with

a 
ertain a

ent on the asymmetry of distribution models.
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We propose a natural generalization of the zero bias transformation,

the term introdu
ed by [2℄, of a probability distribution with non-zero

mean in terms of 
hara
teristi
 fun
tions 
oming ba
k to ideas of Luka
s

in the se
ond edition of his 
elebrated monograph [4℄. We dis
uss this

generalization with the other ones 
alled 'non-zero biased' and 'gener-

alized zero biased' [1℄. We also introdu
e other integral transforma-

tions of probability distributions, in parti
ular, generalizing the station-

ary renewal distribution (equilibrium, or integrated tail distribution) and

© Shevlyakov G.L., 2018
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symmetri
 equilibrium distribution and study their properties in
luding


onstru
tion of optimal estimates for the minimal L1-bounds between

the original distribution and its transformation. As 
orollary and using

results of [5℄ we prove new and sharp moment-type estimates for 
har-

a
teristi
 fun
tions and their derivatives improving, in parti
ular, some

results of [6℄ and [7℄.
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Let Xi be i.i.d. random variables with EXi = 0, DXi <∞. Consider

the random walk Sn = X1 + ... +Xn. Let Mn = max(Si, i ≤ n) be its

© Shklyaev A.V., 2018
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maximum, let τM = min{i : Si = Mn} be the �rst moment the random
walks rea
hes its maximum.

Well-known ar
sine law for τM states that

P
(τM
n

≤ x
)
→ 2

π
arcsin

√
x, x ∈ [0, 1], n→ ∞,

or in lo
al form that

P (τM = m) ∼ 1

πn
√

m
n

(
1− m

n

) , n→ ∞,

uniformly by m/n ∈ [ε, 1− ε] for any ε > 0.
Let introdu
e several 
lasses of random variables.

A random variable X is 
alled arithmeti
 if P(X ∈ αZ) = 1 for some

α > 0. The maximal possible α is 
alled the arithmeti
 step of X .

A random variable X is 
alled latti
e if P(X ∈ β + αZ) = 1 for some

α > 0, β. The maximal possible α is 
alled the latti
e step of X .

A random variable X is 
alled strongly arithmeti
 if X is arithmeti
 and

its arithmeti
 step is equal to its latti
e step.

For example, if P(X = 1) = P(X = −1) = 1/2, then X is arithmeti
,

its arithmeti
 step is equal to 1, its latti
e step is equal to 2, therefore

it's not a strongly arithmeti
 random variable.

In the sequel we 
onsider strongly arithmeti
 or non-latti
e random

variables X . Without loss of generality, further on below we suppose

that the arithmeti
 step of X is equal to 1.
Consider the following generalization of the previous problem: to �nd

the asymptoti
s of probabilities P(τM = m|Mn = k), P(τM ≥ x|Mn =
k) as m, k, n ∈ N, n, k, m, x→ ∞ in strongly arithmeti
 
ase and

P(τM = m|Mn ∈ [y, y +∆n)), P(τM ≥ x|Mn ∈ [y, y +∆n))

as n,m ∈ Z, y ∈ R+
, n,m, y, x → ∞ in non-latti
e 
ase, where ∆n is

some sequen
e, tending to 0 as n→ ∞.

In non-latti
e 
ase we use integro-lo
al form of limit theorems, intro-

du
ed by Stone in [1℄.

We 
onsider three 
ases: standard deviations (k, y ∈ [a
√
n, b

√
n] for

some 0 < a < b), large deviations (k, y ∈ [an, bn] for some 0 < a < b)
and moderate deviations (k, y ∈ [an, bn], an/n

1/2+δ → ∞, bn/n
1−δ → 0

for some δ > 0). For simpli
ity, we state Theorems 1-5 only for strongly
arithmeti
 
ase, in non-latti
e 
ase the results are similar.

1) Standard deviations.
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Theorem 1. Let Xi be strongly arithmeti
 random variables with

EXi = 0, DXi <∞. Then

P(τM = l|Mn = k) ∼ 1

n
g1

(
k

σ
√
n
,
l

n

)
, n→ ∞,

uniformly by k, l ∈ Z, l/n ∈ [a, b], k ∈ [c
√
n, d

√
n] for any 0 < a < b < 1,

0 < c < d, where

g1(x, y) =
x√

2πy3(1− y)
exp

(
−x

2(1− y)

2y

)
.

Theorem 2. Let Xi be strongly arithmeti
 random variables with

EXi = 0, DXi <∞. Then

P(τM ≤ xn|Mn = kn) →
∫ x

0

g1 (s, t)dt, x ∈ [0, 1], n→ ∞,

uniformly by kn ∈ Z, kn/(σ
√
n) → s > 0.

Theorem 1 is proved by the use of Sparre�Andersen identity and

results of Caravenna (see [2℄). Theorem 2 is a 
orollary of Theorem 1.

2) Large devations.

Let X be i.i.d. r.v. with EXi = 0 and suppose that R(h) = EehX <
∞ for h ∈ [0, h+). A random variable X(h)

is 
alled 
onjugate to X with

parameter h if

P(X(h) ≤ x) = R(h)−1
∫ x

−∞

ehtP(X ∈ dt).

Denote by S
(h)
n the random walk with i.i.d. steps X

(h)
i .

It's easy to see that m(h) = EX(h)
exists for any h ∈ [0, h+). More-

over, m(h) is stri
tly in
reasing on [0, h+). Let m+ = limh→h+ m(h).
Theorem 3. Let Xi be strongly arithmeti
 random variables with

EXi = 0, satifying EehX1 <∞, h ∈ [0, h+). Then

P(τM = n− l|Mn = k) ∼ g2

(
k

n
, l

)
, n→ ∞,

uniformly by l ∈ Z, l ≤ a, k/n ∈ [c, d] for any a > 0, 0 < c < d < m+
,

where

g2(x, l) =
P
(
S
(hx)
i > 0, i ≤ l

)
R(hx)

−l

∑∞
j=0 P

(
S
(hx)
i > 0, i ≤ j

)
R(hx)−j

.
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Theorem 3 is proved by the use of lo
al version of large deviation

theorem for Mn, similar to results of Shklyaev (see [3℄) and Kozlov (see

[4℄).

3) Moderate deviations.

Theorem 4. Let Xi be strongly arithmeti
 random variables with

EXi = 0, satifying EehX1 <∞ for some h > 0. Then

P(τM = n− l|Mn = k) ∼ k2

σ2n2
g3

(
lk2

n2σ2

)
, n→ ∞,

uniformly by n1/2+δ < k < n1−δ
, lk2/n2 ∈ [δ,M ] for any δ,M > 0,

where

g3(x) =
1√
2πx

e−x/2

is a probability density fun
tion of χ2
1 distribution.

Theorem 5. Suppose Xi satisfy the assumptions of Theorem 4.

Then for any α ∈ (0.5, 1)

P

(
n− τM
n2−2α

≤ x

∣∣∣∣Mn = kn

)
→
∫ x/s

0

g3(t)dt, n→ ∞,

uniformly by kn/(σn
α) → s > 0.

Theorem 4 is based on lo
al large deviation theorem for random

walk (see [5℄, Chapter 9) and Sparre-Andersen identity. Theorem 5 is a


orrolary of Theorem 4.
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One of the many unusual phenomena experimentally dis
overed dur-

ing landings of spa
e
raft on the Moon is the existen
e of dusty plasma


louds, whi
h �ll a layer with a thi
kness of several tens of kilometers

above Moon surfa
e. These 
louds 
onsist of 
harged dust grains of re-

golith, whi
h 
overs the entire lunar surfa
e with a layer whose thi
kness

rea
hes several meters in lunar seas [1, 2℄. Samples of lunar regolith were

delivered to Earth by spa
e
raft, and its stru
ture was well studied. Re-

golith is a mixture of powders of di�erent oxides (aluminum oxide, sili
on

oxide, iron oxide, et
) with a mean grain radius of 70 − 100 µm, and a

large number of parti
les with the radius of the order of one millimeter.

The regolith parti
le radius distribution is a power-series [3℄. The dusty

plasma 
loud density above the lunar surfa
e and its altitude distribution

were not spe
i�
ally studied during the XX 
entury Moon exploration

programmes. However, observations showed that under lunar 
onditions,


harged parti
les of regolith have in
reased adhesive properties that limit

the use of most spa
e
raft systems on lunar surfa
e [4℄. This is why pro-

du
tion of 
harged dust grain �ows in laboratory 
onditions is intensively

studied in order to test the 
omponents of future lunar te
hnology [5℄.

In these experiments, the parameters of grain distributions over al-

titude, size and velo
ity 
an only be obtained from di�erent (plasma)

models. However, the modern models, whi
h take into a

ount di�er-

ent physi
al pro
esses, su
h as, e.g., the in�uen
e of the solar wind,

© Skvortsova N.N., Maiorov S.A., Malakhov D.V., Stepakhin V.D.,

Obraztsova E.A., Shishilov O.N., 2018
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the photoionization, the sho
k waves, 
an only des
ribe the as
ension of

mi
ron-sized parti
les to altitudes of about one meter [6℄.

It is known that the Moon is 
onstantly bombarded by meteorites.

The impa
t of even a small-size meteorite produ
es enough energy to

melt, vaporize and destroy the regolith and release metal and oxygen

oxides [7℄.

Earlier, development of 
hain plasma
hemi
al rea
tions produ
ing a

dusty plasma 
loud above the surfa
e of metal and diele
tri
 powder

mixtures irradiated by powerful gyrotron radiation was experimentally

observed in the Plasma Physi
s Department of the Prokhorov General

Physi
s Institute of the Russian A
ademy of S
ien
es [8℄. The absorbed

mi
rowave power ne
essary to ignite these 
hemi
al pro
esses was found

to be 
omparable with the impa
t of a meteorite with the size of about

ten mi
rons. This allowed us to 
ondu
t a model laboratory experiment

with the goal to 
reate ensembles of dusty stru
tures during the devel-

opment of 
hain exothermi
 plasma
hemi
al rea
tions initiated by gy-

rotron in metal-diele
tri
 powder mixtures whose 
omposition imitated

lunar regolith.

In these experiments, we used a mixture of oxide powders with a

per
entage 
omposition the same as in regolith, and with a uniform par-

ti
le size distribution. Crossing the energy threshold of 
hain rea
tions

(gyrotron pulse energy of 1 − 3 kJ at pulse duration of 1.5 − 4 ms)

initiates an explosive pro
ess 
aused by Coulomb repulsion of 
harged

parti
les from regolith surfa
e into the plasma
hemi
al rea
tor volume.

After the powder mixture explosion, self-propagating 
hain rea
tions of

high-temperature plasma
hemi
al synthesis were observed, whi
h 
on-

tinue for tens of se
onds. During this period, the suspended dust grains

levitate several tens of 
entimeters above the powder mixture surfa
e,

and produ
e a levitating 
loud, whi
h o

upies not only the entire rea
tor

volume, but also raises to a height of up to 1 m above the re
tor (and

this, in the terrestrial gravitation �eld). The energy produ
ed during

this pro
ess ex
eeds the initiation energy several hundredfold. Melted

regolith spheroids with diameters of 1−1000 µm are deposited on the side

surfa
e of the rea
tor above the powder mixture, whose size distribution

is also uniform.

In this work, we note the possible analogy between this pro
ess and

the raise of dusty plasma 
louds above regolith surfa
e on the Moon,

whi
h, similarly, 
ould be 
aused by not only physi
al pro
esses, but

also 
hemi
al 
hain pro
esses 
aused by meteorite impa
t.
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This paper investigates a retrial queuing system with a single server,

whi
h is liable to random breakdowns (B�er
zes and Sztrik and T�oth and

Nazarov [1℄, Kim [2℄, Wang and Zhao and Zhang [5℄) by the help of a

simulation program. The number of sour
es of 
alls is �nite and 
ollision

(Nazarov and Kva
h and Yampolsky [3℄, T�oth and B�er
zes and Sztrik

and Kva
h [4℄) 
an take pla
e. The failure of server blo
k the system's

operation therefore the arriving 
ustomers 
an not enter the system,

meaning that those 
alls are lost. All the random variables in
luded in

the model 
onstru
tion are assumed to be generally distributed and in-

dependent of ea
h other. The novelty of this analysis is the inspe
tion

of blo
king e�e
t on the performan
e measures using di�erent distri-

butions. Various �gures represent the impa
t of di�erent distributions

on the main performan
e measures like mean and varian
e of number

of 
ustomers in the system, mean and varian
e of response time, mean

and varian
e of time a 
ustomer spent in servi
e, mean and varian
e of

sojourn time in the orbit.
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Permutation tests for homogeneity based

on some 
hara
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One of the important problems in statisti
s is the problem of testing

the equality of the distributions of several populations. A typi
al exam-

ple, often referred to, is the 
omparison of several drugs with a pla
ebo,

where the hypothesis of no drug e�e
t is tested versus the alternative

of at least one e�e
t. There is a number of tests for this problem es-

pe
ially for the two-sample problem. Su
h pro
edures are usually not

distribution free, the distribution of the test statisti
 depends on the dis-

tributions of the samples, therefore 
riti
al points for the distribution of

© Ushakov N.G., Ushakov V.G., 2018
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the test statisti
 under the null hypothesis of homogeneity are obtained

using a bootstrap-type resampling s
heme, see, for example, Allen [1℄.

A 
lass of tests for testing the homogeneity of two populations is

proposed by Meintanis [2℄. The tests are based on the empiri
al 
hara
-

teristi
 fun
tion, and the test pro
edure is based on resampling from the

permutation distribution of the test statisti
. The test statisti
 is the

weighted L2
distan
e between empiri
al 
hara
teristi
 fun
tions. Weight

fun
tions of two types are used � a normal density and a Lapla
e density.

In this work, we propose tests of homogeneity of two or more distribu-

tions. The tests are based on 
hara
terizations of homogeneity obtained

by Ushakov [3℄ and Ushakov and Ushakov [4℄. Sin
e the distribution of

the test statisti
s depends on the distributions of populations, we also

use the bootstrap-type resampling te
hnique, mentioned above.
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On stability of 
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terization

of distribution types

A. P. Ushakova

1
, N. G. Ushakov

2

1
IMT RAS, Chernogolovka, Russia, al.ushakova�gmail.
om

2
NTNU, Trondheim, Norway, nikolai.ushakov�ntnu.no

The following problem often arises in appli
ations. Suppose that

there are a number of small independent samples su
h that in ea
h small

sample observations are independent and identi
ally distributed while

from sample to sample they have di�erent values of lo
ation parameter.

First this problem was posed by A.N.Kolmogorov, see Zinger [1℄. In

© Ushakova A.P., Ushakov N.G., 2018
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this situation it is ne
essary to use statisti
s whi
h do not depent on the

lo
ation parameter. Re
onstru
tion of the type of initial distribution

from distribution of su
h a statisti
 is an a
tual problem, in parti
ular

for goodness of �t testing.

The stability of the re
onstru
tion has been studied by a number of

authors, see, for example, Prokhorov [2℄, Zinger and Kagan [3℄, Kagan

and Klebanov [4℄. Ushakova [5℄ proved that the upper bound of stability

has the order ǫ1/3L(ǫ), where L(ǫ) is a slowly varying fun
tion. Here

this estimate is improved.

In what follows we suppose (without loss of generality) that the small

subsamples have size 3, i.e. the minimal ne
essary size. The main result

is as follows. Let X1, X2, X3 be independent random variables with


ommon distribution fun
tion F (x − θ) and unit varian
e, Φ(x) be the
standard normal distribution fun
tion. Let a = (a1, a2, a3) be a ve
tor
satisfying the following 
onditions:

a1 + a2 + a3 = 0, a21 + a22 + a23 = 1.

Denote

X(a) = a1X1 + a2X2 + a3X3,

and let F (a)(x) be the distribution fun
tion of X(a)
.

Theorem. If

sup
a

∫ ∞

−∞

(1 + |x|)d|F (a) − Φ| ≤ ǫ < 1,

then

sup
x

|F (x− θ)− Φ(x)| ≤ ǫ1/2L(ǫ)

for some θ, where L(ǫ) is a slowly varying fun
tion.

We also 
onsider the problem of testing for homogeneity of two sam-

ples in the 
onsidered 
ase when the samples 
onsist of small subsamples.
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Development of a semiautomati
 system for

pro
essing the magneti
 probe diagnosti
 data

on L-2M stellarator
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At the present time, experiments on plasma heating and 
on�nement

are 
arried out on the L-2M stellarator (Prokhorov General Physi
s In-

stitute of the Russian A
ademy of S
ien
es) using MIG-3 gyrotron 
om-

plex whi
h allows us to a
hieve re
ord spe
i�
 energy deposition into the

plasma (up to 3 MW/m3) [1℄. The development of this heating 
omplex

as well as studies of the new pulsed-periodi
 regime of plasma heating,

during whi
h the 10-ms-long gyrotron pulse is separated into train of

three 3-ms-long pulses [2℄ in
reases the ne
essity of studying the stabil-

ity of the signals of both ma
ro (temperature, density, energy deposition)

and mi
ro (signal �u
tuations, turbulen
e diagnosti
s) parameters dur-

ing the analysis of experimental data [3, 4℄. Among the latter is the

magneti
 probe diagnosti
 of the L-2M stellarator, whi
h 
onsists of a

series of up to 9 dete
tors pla
ed in di�erent diagnosti
 
ross-se
tions

and allows us to study the spe
tral 
hara
teristi
s of di�erent spatial

modes of the low-frequen
y plasma turbulen
e.
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In this work, analysis of the signals of magneti
 probe diagnosti
s of

the L-2M stellarator in the above regimes is presented, using the semi

automati
 pro
essing system that is being developed [5℄.
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It is well-known that the regularly varying fun
tions of one variable

were introdu
ed by J. Karamata (1930). Namely, positive measurable

fun
tion f(t), de�ned for t ≥ C ≥ 0 is said to be regularly varying at

in�nity i�, for any λ > 0, there exists a positive and �nite

lim
t→∞

f(λt)

f(t)
= ϕ(λ) (⇒ ϕ(λ) = λ̺).

A number ̺ is 
alled as the index of regular variation of the fun
tion

f(t).

© Yakymiv A.L., 2018
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If in the one-dimensional 
ase, there is in fa
t one de�nition of regu-

larly varying fun
tions, then in the multidimensional 
ase the situation

is signi�
antly di�erent. Namely, there are a number of 
lasses of fun
-

tions that generalize this 
on
ept. At the same time, ea
h 
lass of su
h

fun
tions has (generally speaking), its own appli
ations.

Multidimensional extensions of regularly varying fun
tions are de-

�ned by di�erent authors, for instan
e: Baj�sanski and Karamata

(1969), Yu.Drozhzhinov and B. Zav'yalov (1984, 1986, 1994), L. de

Haan (1985), S.M.Kozlov (1983), A.Nagaev and A. Zaigraev (2003),

M.Meershaert (1986, 2001), I.S.Mol
hanov (1993), E.Omey (1982,

1989), T.Ostrogorsky (1995, 1997, 1998), A. Stam (1977), S. Resni
k

(1986, 2007, 2015), E.Rva�
eva (1962), A.Yakymiv (1981, 2003, 2018).

In addition, a number of arti
les by di�erent authors 
ontaine 
on-


rete results in su
h areas of probability theory and it's appli
ations as

random point pro
esses, extreme values, the summation theory of ran-

dom ve
tors, generalized renewal theory, bran
hing pro
esses, in�nitely

divisible random ve
tors, �nan
e mathemati
s, risk theory, random per-

mutations and random mappings, random ve
tors with multiple power

series distribution, growth of preferential atta
hment networks and oth-

ers. Some referen
es one 
an see in the author's book (2005).

It is less known that J.Karamata, together with B.Baj�sanski (1969)

gave a deep generalization of regularly varying fun
tions not only to the

multidimensional 
ase, but also for topologi
al groups. Namely, 
on-

tinuous fun
tions f : G → R+ are 
onsidered, where G is an arbitrary

topologi
al group where a �lter U of open 
onvex sets in G with 
ount-

able base is given. The �lter U is thought of as G-invariant, that is,
Uh ∈ U and hU ∈ U for any set U ∈ U and any element h ∈ U . A

fun
tion f is said to be regularly varying with respe
t to �lter U if the

limit

lim
g→∞

f(gh)

f(g)
= φ(h)

exists for any h ∈ G, where g → ∞ means 
onvergen
e with respe
t to

the �lter. In this paper, a theorem about uniform 
onvergen
e is also

proved.

In Ostrogorsky (1995, 1997, 1998), the resear
h started in Baj�sanski,

Karamata (1969) is 
ontinued. As the group G, various 
ones in Rn
are


onsidrered, su
h as the hyper-o
tant, the future light 
one, arbitrary

homogeneous 
ones.

In Drozhzhinov and Zav'yalov (1984) and further papers the regu-

larly varying generalized fun
tions with support on homogeneous 
ones
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were introdu
ed and studied, see also Vladimirov, Drozhzhinov and

Zav'yalov's book (1986).

In the Omey's do
tor's dissertation (1982) and his book (1989), mea-

surable fun
tions : R2
+ → R+ are studied su
h that the limit

lim
t→∞

f(r(t)x, s(t)y)

f(r(t), s(t))
= λ(x, y)

exists for some auxiliary fun
tions r, s : R+ → R+, r(t) → ∞, s(t) → ∞
as t→ ∞, some positive fun
tion λ(x, y) and for all x, y > 0. Using this
de�nition, E.Omey obtained some results in generalized renewal theory,

extreme value theory and for domains of attra
tion of partial sums of

i.i.d. random ve
tors.

In Meershaert (1986, 1988), fun
tions f(t) of one variable t are 
on-
sidered whose values are non-singular linear operators from Rk

, and the

idea of regular variation is extended to this 
ase. In Meershaert and

S
he�er (2001), the limit distributions for sums of i.i.d. random ve
tors

with operator normalization were obtained with a number of appli
a-

tions, with helping of su
h notion.

In I.S.Mol
hanov (1993), regularly varying fun
tions f(x) de�ned in

some m-dimensional 
one are introdu
ed whose values are 
losed (
om-

pa
t) sets in Rd
. Further, the limit behaviour of su
h random sets were

investigated.

A

ording to S. Resni
k (1986), a random ve
tor X taking values

in Rn
is said to be regularly varying at in�nity with index α ≥ 0 and

spe
tral (probability) distribution Ps on the unit sphere Sn−1 ⊂ Rn
if

there exist positive c and σk, k ∈ N , su
h that, as k → ∞,

k P{σ−1k X ∈ A(r, B)} → cr−αPs(B)

for all sets B ⊂ Sn−1
of 
ontinuity of the limiting measure Ps and r > 0,

where

A(r, B) = {x : x ∈ Rn, |x| > r, x/|x| ∈ B}.
In Basrak, Davis, Mikosh (2002), it is shown that if a random ve
tor

X regularly varies at in�nity with index α > 0, then for any x ∈ Rn
and

some slowly varying at in�nity fun
tion L(t) there exists the limit

lim
t→∞

P{(x,X) > t}
t−αL(t)

= ω(x),

and there exists x0 6= 0 su
h that ω(x0) > 0. It is also shown that for

non-integer α > 0 the 
orresponding 
onverse assertion is true, while
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the limiting measure Ps is uniquely determined by the fun
tion ω(x). A

ounterexample is given for α = 2.

In A.Nagaev and A.

�

Zaigraev (2003), a fun
tion f(x), x ∈ Rn
, is said

to be (β, λ) regularly varying if, as |x| → ∞,

sup
ex∈Eλ

∣∣∣∣
f(x)

rβ(|x|)
− λ(ex)

∣∣∣∣ = o(1),

where ex = x/|x|, rβ(t) regularly varies as t→ ∞ with

Eλ = {a ∈ Sn−1 : λ(a) > 0}.

In Resni
k (2007, 2008), some 
lasses of measures and fun
tions are


onsidered. In parti
ular, they allow to obtain the next asymptoti
s:

tP{(X/a(t) ≥ x, Y/b(t) ≥ y)} → µ0(x, y) ≡

≡ µ([x,∞]× [y,∞]), ∀x, y > 0,

where r.v. X and Y have appli
ations and 
on
rete interpretation in

preferential atta
hment networks, see Resni
k et al (2015, 2016). The

authors of last two papers say that that the regular variation is nonstan-

dard, if a(t) and b(t) have di�erent order at in�nity.
Let U = {Uk, k ∈ I ⊆ [0,∞)} stand for an arbitrary family of linear

operators in Rn
whi
h leave invariant the 
one Γ ⊆ Rn

:

UkΓ = Γ ∀k ∈ I.

We assume that ∞ is a limit point of the set I. A

ording to Yakymiv
(2003), a fun
tion f(x), whi
h is de�ned, positive, and measurable in Γ,
is regularly varying in Γ along a family U = {Uk, k ∈ I} i� for some

ve
tor e ∈ Γ and all x ∈ Γ as xk → x, k → ∞, k ∈ I,

f(Ukxk)

f(Uke)
→ φ(x) > 0, φ(x) <∞.

In the already mentioned paper, this de�nition was used at the study

of asymptoti
s of in�nitely divisible distributions with a support in ho-

mogeneous 
ones. Also the asymptoti
 properties of some 
lasses of

random permutations and random mappings were investigated (2009,

2010, 2014). Re
ently (2018), we obtained the limit theorems (integral

and lo
al) for multiple power series distributions. (In the last two appli-


ations, this de�nition is used in the 
ase when Γ = Rn
+ and operators

Uk are diagonal).
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In this abstra
t, we mention only di�erent multidimensional gener-

alizations of the regularly varying fun
tions known to the author and

some their appli
ations in probability theory. But we suppose to give

mu
h more information in this dire
tion at the presentation.
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This paper 
ontinues a series of studies dealing with noninvasive pre-

operative methods for lo
alizing eloquent areas of the human brain.

Magnetoen
ephalography (MEG) is a noninvasive method for study-

ing brain a
tivity. It has high temporal and spatial resolutions, and

only weakly depends on the inhomogeneities of the head 
ondu
tivity,

whi
h makes it a valuable tool for both neuros
ien
e and 
lini
al appli-


ations [1℄.

The inverse problem of magnetoen
ephalography is ill-posed and dif-

�
ult for both analyti
al and numeri
al solutions. Additional 
ompli
a-

tions arise from the volume (passive) 
urrents and the asso
iated mag-

neti
 �elds, whi
h strongly depend on the brain geometry.

An analyti
al formula is derived for the solution of the forward prob-

lem that 
omputes the magneti
 �eld on the surfa
e of the head from the

known lo
ation and orientation of a 
urrent dipole in the low-frequen
y

approximation in the spheri
al model [2℄.

In this paper we �nd approximate analyti
al solutions for the forward

and the inverse problems in the spheroid geometry. We 
ompare the

obtained results with the exa
t solution of the forward problem and

dedu
e that for a wide range of parameters our approximation is valid.

In addition, the paper 
onsiders the question of the stability of solu-

tions of the inverse problem of MEG to the e�e
t of noise. The solution

is unstable to the e�e
t of noise on its angular 
omponent, but the de-

viation from the true solution is mu
h less than the noise varian
e.
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The original drug is a drug that di�ers from all previously registered

drugs with a pharma
ologi
ally a
tive substan
e (pharma
euti
al sub-

stan
e) or a 
ombination of su
h substan
es.

Generi
 medi
inal produ
t (generi
 drug) is a drug that 
ontains

the same pharma
ologi
ally a
tive substan
e (pharma
euti
al substan
e)

in the same dose and the same dosage form as the original drug, is

equivalent to the original produ
t in terms of quality, e�
ien
y and

pro�le se
urity and is produ
ed without a li
ense of the 
ompany owning

the original medi
inal produ
t. Implemented after the expiry of the

patent or other ex
lusive rights to manufa
ture and sale of the original.

Thus, the presen
e on the market of generi
 funds is due, �rst of all,

the expiry of the terms of patent prote
tion for the produ
tion of original

funds. The term of patent prote
tion of a medi
inal produ
t, as a rule,

is not more than 20 years.

Generi
 medi
ines must meet the same quality, e�
a
y and safety

standards as the original medi
ines, but in addition, 
onvin
ing eviden
e

© Zakharova T.V., Slivkina A.V., Dranitsyna M., 2018
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must be provided that they are equivalent, previously registered similar

medi
ines and are 
lini
ally inter
hangeable with them.

To date, the main 
riterion for evaluating bioequivalen
e is the level

of drug 
on
entration in the blood over time. To do this, experiments

are performed on healthy volunteers, after whi
h the results are averaged

and the 
on
entration-time 
urve is plotted against time. The 
on
lusion

about bioequivalen
e of drugs is made on the basis of the results obtained

by 
omparing the area under the resulting 
urves.

However, this method has a huge disadvantage: it is impossible to

tra
e and take into a

ount the main stages of the kineti
s of the prepa-

ration, and even with a su�
iently large 
oin
iden
e of areas under the


urves, it 
an not be 
on
luded that the original drug and generi
 behave

in the human body in the same way [3℄.

In this paper, the method of estimating bioequivalen
e, whose main

goal is to break the drug 
on
entration 
urve in the body into 
ompo-

nents, is 
onsidered, implying that this 
urve is a signal that demon-

strates the behavior of the drug. These 
omponents are dire
tly related

to the main stages of the drug. Denoting the boundaries of these stages,

we 
an, with a minimum of error, 
ompare drugs by the duration and

nature of these stages. To isolate the 
omponents, methods su
h as the

method of independent 
omponents, the window dispersion method[1℄,

and the study of the varian
e gamma pro
ess will be used.

The window dispersion is de�ned by the formula [2℄:

WN,t =
1

N − 1

N∑

i=1

(Xi −X)2,

where

X =
1

N

N∑

i=1

Xi.

The window size was 
hosen empiri
ally, the best results were obtained

with a window width equal to 3 points of referen
e. Window dispersion

removes the trend and in
reases the di�eren
es in the 
on
entration val-

ues, so a sharp de
rease in the window dispersion will 
orrespond to a

de
rease in the 
on
entration, whi
h is the 
ase with absorption.

The method of independent 
omponents (OLS, Independent 
ompo-

nent analysis, ICA) [4℄ is a method for dividing a multidimensional signal

into additive 
omponents. Suppose we have signal sour
es s1, s2, ..., sn
and signal re
eivers x1, x2, ..., xn. Ea
h re
eiver 
aptures the weighted
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sum of the signals.

x1(t) = a11 s1(t) + a12 s2(t) + ...+ a1n sn(t),

x2(t) = a21 s1(t) + a22 s2(t) + ...+ a2n sn(t),

... ... ... ...

xn(t) = an1 s1(t) + an2 s2(t) + ...+ ann sn(t),

where t is a �xed instant of time.

Our task is to determine the values of the sour
es from the values

of the re
eivers s, i = 1, ..., n and weights aij , i = 1, ..., n, j = 1, ...,

n. Sour
es of signal are also 
alled hidden variables, latent variables or

independent 
omponents.
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On multivariate models based on s
ale mixtures

I. V. Zolotukhin
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Shirshov Institute of O
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Russia, Igor.Zolotukhin�gmail.
om

Let a multivariate random variable X = (X1, ..., Xn) have indepen-
dent 
omponents Xj . Further assume that every 
omponent Xj has the

d-dimensional stri
tly stable, or geometri
ally stri
tly stable distribution
with the stability index αj (1 < αj ≤ 2) and the 
hara
teristi
 fun
tion

φj(θj) = E (exp(i θTj Xj)), θj = (θ
(1)
j , ..., θ

(d)
j ) ∈ R

d.
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Thereby X is both multivariate and multidimensional random vari-

able.

Consider the ve
tor

Y = (y1, ..., yn) = (β
1/α1

1 X1, ..., β
1/αn

1 Xn),

whi
h is a s
ale mixture of the above random variable X and the ve
tor

β∗ = (β
1/α1

1 , ..., β
1/αn
n ), or, in other words, β∗ is the subordinator of X .

The positive random ve
tor β mentioned above is given by its Lapla
e
transform

Φ(s1, ..., sn) = E
(
exp(−

n∑

j=1

sjβj)
)
.

Theorem.

The 
hara
teristi
 fun
tion of the random variable Y is

ψY (θ1, ..., θn) = Φ(− logφ1(θ1), ...,− logφn(θn)).

As examples of using the expli
it expression of the 
hara
teristi
 fun
-

tion the following subordinators were 
onsidered:

� Marshall�Olkin multivariate exponential distribution.

� Multivariate gamma distribution.

In the �rst 
ase, the distribution is a dis
rete mixture of the gen-

eralized multivariate Linnik distribution [1℄ and its mixtures with the

distributions of its own proje
tions onto all the 
oordinate hyperplanes.

The resear
h was performed in the framework of the state assignment

of FASO Russia (theme No. 0149-2018-0014).
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