Faculty of Computational Faculty of Mechanics and Institute of Informatics

Mathematics and Cyber- Mathematics of Perm Problems of the Federal

netics of the Lomonosov State University (PSU) Reseacrh Scientific Cen-

Moscow State University ter "Computer Science and
Control" of RAS

XXXV International Seminar on
Stability Problems for Stochastic Models

24 — 28 September 2018
Perm, Russia

Book of Abstracts

Edited by
Prof. Victor Yu. Korolev and Assoc. Prof. Vladimir V. Chichagov

smmEm
| 88 asaaai-iaaaaa aa |

U3JIATENbCKUA LEHTP
“Perm University Press”

'

Perm 2018



The Organizing Committee of
the XXXV International Seminar on Stability Problems for
Stochastic Models

International Program and Organizing Committees: V.Korolev
(Russia) — Chairman, V.Chichagov (Russia) — Vice-Chairman,
L. Shevtsova (Russia) — Vice-Chairman, S. Baran (Hungary), A. Bulinski
(Russia), I.Fazekas (Hungary), A Gorshenin (Russia) — Secretary,
Yu. Khokhlov (Russia), L.Klebanov (Czech Republic), Ya.Lumelskii
(Russia, Israel), J.Misiewicz (Poland), E. Omey (Belgium), G. Pap (Hun-
gary), P. Sapozhnikov (Russia), A.Zeifman (Russia).

Local Organizing Committee: V. Malanin — Chairman, A. Vetrov —
Vice-Chairman, I. Poloskov — Vice-Chairman, V. Chichagov — Vice-Cha-
irman, A.Gusev, O. Demeneva, M. Radionova, A.Shkaraputa, L. Balyu-
kina — Secretary, S. Kameneva — Secretary.

XXXV International Seminar on Stability Problems for Stochas-
tic Models (ISSPSM 2018): Book of abstracts. — Perm: Perm State
University, 2018. — 98 p.

The book includes the abstracts of communications submitted to the
XXXV International Seminar on Stability Problems for Stochastic Models (IS-
SPSM 2018).

XXXV Me>xayHapoaHbIi ceMHHAp 110 IIpobJjieMaM yCTOM4InBOCTH
croxactudeckux Mmogenein (ISSPSM 2018): ¢6. TesucoB OoKiI. /
B.IO. Kopones, B.B. Yuuaros; Ilepm. roc. nam. wucciaen. yu-t. — Ilepws,
2018. — 98 c.

B cOopHUK BKJIIOYEHBI TE3WCHl JOKJIATOB, IMPEICTABIEHHBIX Ha XXXV
Me:x 1yHapoaHbIi ceMUHAP 110 IpobleMaM yCTOMYIMBOCTHA CTOXaCTHIECKUX MO-

neneit (ISSPSM 2018).

Issued by decision of International Program and Organizing
Committees

Holding of the Seminar and publication of this Book of abstracts were
partially supported by Russian Foundation for Basic Research (project
Ne 18-01-20071).

(© Perm State University, 2018
ISBN 978-5-7944-3155-1 @ Authors, 2018



Contents

A.A. Abdushukurov. Estimation of conditional distribution
function under dependent random censored data . . . . .
L.G. Afanaseva. Stability analysis of retrial queueing systems
based on the synchronization method . . . . . . . ... ..
M.S. Al-Nator, S.V. Al-Nator. Optimal portfolio construction
with two-sided weight constraints and commission .
M.S.Al-Nator, S.V.Al-Nator, Yu.F.Kasimov. Multi-period Mar-
kowitz model and optimal self-financing strategy with
COMMISSION . . . . . . Lo
M. Alhuzani, A. Chuprunov. Limit theorems connected with cells
fromapointedset . ... .. ... ... .. ... ..., .
E.E. Bashtova, A.B. Popov. Infinity-channel queueing system
with time-depending intensity of input. Fast and slow
growth of the intensity . . . . . . .. ... .. ... ....
V.E. Bening, A.A. Kornievskaya. On the deficiency concept in
statistical problems based on the samples with random
SIZES . . . i e e e e e e e e e
T. Bérczes, A. Kuki, A. Téth, J. Sztrik. Performance modeling
of finite-source retrial queueing systems with collisions
and blocking . . .. ... oL L Lo Lo
1.A. Cheplyukova, Yu.L. Pavlov. Complex network models and
generalized allocation scheme . . . . . ... ... ... ..
V. V. Chichagov. Generalization of the Rao—Robson—Nikulin
test . . . .
Z. Dahmane, A. Aissani. Optimal control of a single-server re-
trial queue with two-phase service . . . .. ... ... ..
R.A.Gabdullin, V.A.Makarenko, I.G. Shevtsova. Structural im-
provement of Esseen’s and Rozovskii’s inequalities
L.R. Kakadjanova. Uniform limit theorems for censored integ-
rals with application in estimation theory . . .. ... ..
E.V. Karachanskaya. Programmed control with probability 1
for stochastic dynamical systems . . ... ... ... ...
Yu.S. Khokhlov. Quality of service estimation in telecommuni-
cation system with nonhomogeneous input flow . . . . . .
P.A. Koldanov. Statistical procedures for network structures
identification with invariant risk function . ... ... ..



V.N. Kolokoltsov. Probabilistic methods for the analysis of frac-
tional and generalized fractional partial differential equa-

tions . . . . .o 51
V.Yu. Korolev, A.K. Gorshenin. Probability models of statisti-

cal regularities in rainfall data . . . . . . . . . .. ... .. 52
A.A. Kudryavtsev, S.I. Palionnaya, A.I Titova. Bayesian me-

thod of modeling the balance and advantage processes . . 54
A. Kuki, T. Bérczes, A. T6th, J. Sztrik. Numerical results on fi-

nite source Markov retrial system with collision . . . . . . 56

M.M. Leri. Clustering and assortativity in configuration graphs 57
V.A. Makarenko, R.A. Gabdullin, I.G. Shevtsova. On general-

ization of the Ahmad-Wang inequality . . . . . . ... .. 61
K. Motarjem, M. Mohammadzadeh. A new class of spatial sur-
vival model with closed skewed-Gaussian random effect . 63

N.S. Nurmukhamedova. Asymptotic representation for likeli-
hood ratio statistics in competing risks model under hy-

brid censoring . . . . . . . ... L 66
E. Orsingher. Some probabilistic features of the iterated Brow-
nian motion . . . .. ... L Lo 68

LE. Poloskov. New scheme for calculation of senior moment
functions for the state vector of linear stochastic delay
differential system excited by additive and multiplicative

whitenoises . . . . . . .. .. L Lo L Lo 69
V. V. Saenko. Integral representation of the density of the frac-

tional-stable law . . . . .. ... o Lo 72
0.V. Shestakov. Thresholding rules in the models with non-Ga-

ussian NoiSe . . . . . ... e 75
G.L. Shevlyakov. Robust minimax estimation of location and

least favorable distributions under asymmetry . . . . . . . 76
I.G. Shevtsova. Integral transforms of characteristic functions

and their properties . . .. ... .. .. ... ... .... 76
A.V. Shklyaev. Non-arcsine law for random walk conditioned to

reachahighlevel . . . . . ... ... ... . 77

N.N. Skvortsova, S.A.Maiorov, D.V.Malakhov, V.D.Stepakhin,
E.A. Obraztsova, O.N. Shishilov. Size distributions of re-
golith granules at meteorite impact on the Moon and in
laboratory experiments with microwave discharge . . . . . 81
A. T6th, T. Bérczes, J. Sztrik, A. Kuki. Simulation of finite-so-
urce retrial queueing systems with collisions and blocking 83

4



N.G. Ushakov, V.G. Ushakov. Permutation tests for homogene-
ity based on some characterizations . . . . . . . . ... ..
A.P. Ushakova, N.G. Ushakov. On stability of characterization
of distribution types . . . . . .. .. ... ... ..., ..
E.V. Voronova, N.N. Skvortsova, Yu.V. Kholnov, D.V.Malakhov.
Development of a semiautomatic system for processing
the magnetic probe diagnostic data on L-2M stellarator
A.L. Yakymiv. Multivariate regular variation in probability the-
OFY '« v v e e e e e e e e e
T.V.Zakharova. Magnetoencephalography inverse ill-posed pro-
blem . . . . .. ...
T.V. Zakharova, A.V. Slivkina, M. Dranitsyna. The application
of the ICA method and window dispersion in the study of
bioequivalence of drugs . . . . . . .. ...
L V. Zolotukhin. On multivariate models based on scale mixtu-
FES v i e e e e e e e



XXXV International Seminar on Stability Problems for Stochastic
Models

Estimation of conditional distribution function
under dependent random censored data

A. A. Abdushukurov!

!Branch of Moscow State University in Tashkent, Uzbekistan,
a_ abdushukurov@rambler.ru

The aim of paper is considering the problem of estimation of con-
ditional survival function in the case of right random censoring with
presence of covariate.

Let’s consider the case when the support of covariate C'is the interval
[0,1] and we describe our results on fixed design points 0 < 7 < xp <
.. < xp <1 at which we consider responses (survival or failure times)
X1, ..., X, and censoring times Y7, ..., Y, of identical objects, which are
under study. These responses are independent and nonnegative ran-
dom variables (r.v.-s) with conditional distribution function (d.f.) at z;,
F,,(t) = P(X; <t/C; = x;). They are subjected to random right cen-
soring, that is for X; there is a censoring variable Y; with conditional
d.f. Gy, (t) = P(Y; < t/C; = x;) and at n-th stage of experiment the ob-
served data is S = {(Z;,d;,C;), 1 <i < n}, where Z; = min(X;,Y;),
0; = I(X; <Y;) with I(A) denoting the indicator of event A.

Note that in sample S rv. X, is observed only when §; = 1.
Commonly, in survival analysis to assume independence between the
r.v.-s X; and Y; conditional on the covariate C;. But, in some practical
situations, this assumption does not hold. Therefore, in this article we
consider a dependence model in which dependence structure is described
through copula function. So let S, (t1,t2) = P(X, > t1,Ye > t2), t1,
ty > 0, the joint survival function of the response X, and the censoring
variable Y, at x. Then the marginal survival functions are SX(t) =
1—F,(t) = S.(¢,0) and SY (t) = 1 —G.(t) = S.(0,t), t < 0. We suppose
that the marginal d.f.-s F, and G, are continuous. Then according to
the Theorem of Sclar (see, [1]), the joint survival function Sy (¢1,t2) can
be expressed as

Se(ti,ta) = Co(SX (1), S (t2)), ti,ta >0, (1)

where C,(u,v) is a known copula function depending on x, S and SY
in a general way. We consider estimator of d.f. F, which is equivalent

© Abdushukurov A.A., 2018
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to the relative-risk power estimator [2, 3] under independent censoring
case.

Assume that at the fixed design value x € (0,1), Cy in (1) is Archi-
medean copula, i.e.

Se(ti,t2) = o (0 (S2 (1)) + 92 (SY (2))),  t1,t2>0,  (2)

where, for each z, ¢, : [0,1] — [0, +0o0] is a known continuous, convex,
strictly decreasing function with ¢, = 0. We assume that copula gen-
erator function ¢, is strict, i.e. ©,(0) = oo and ¢, ! is a inverse of p,.
From (2), it follows that

P(Zy >t) =1— H,(t) = H,(t) = SZ(t) = S.(t,t)
=02 (pa (ST (1)) +9u(S2 (1), t>0, (3)

Let Hg(gl)(t) = P(Z, <t,6, = 1) be a subdistribution function and A,(t)
is crude hazard function of r.v. X, subjecting to censoring by Y,

P(X, edt,X, <Y,) H ()
P(Xy>t,Y, >t)  SZ(t—)"

A (dt) = 4)

From (4) one can obtain following expression of survival function S :

SX(t) = @51{— /Ot ¢ (SZ(u)) nggl)(u)}, t>0. (5)

In order to constructing the estimator of SX according to represen-

tation (5), we introduce smoothed estimators of SZ, H. M and regularity
conditions for them. We use the Gasser—Miiller weights

1 S | T —z .
wm(l’hn)_gqn(x,hn)/z Hw( I )dz, i=1,...,n, (6)

i—1

o1 T—2z
q”(];;hn) = / —7T( ) dZ,
o Bn o\ he

where g = 0, 7 is a known probability density function (kernel) and
{hn,n > 1} is a sequence of positive constants, tending to zero as n — oo,
called bandwidth sequence.

with
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Let’s introduce the weighted estimators of H,, SZ and Hg(gl) respec-
tively as

Hzn(t) = Zwm(w, ha) 1(Z; < 1), S%,(t) =1 — Hon(t),
a4 () = zn:wm(x,hn)l(Zi <t,6; =1). (7)

Then plugging estimators (6) and (7) in (5), we obtain the following
intermediate estimator of S:X:

SE()=1—Fup(t) = ;" [ — /Ot apé(Sf(u)) dHM (w)|, t>0.

In this work we propose the next extended analogue of estimator
introduced in [2, 3]:

~

SXt) = 03 [p(SZ,(1)) - pan(t)] = 1 — Eun(t), (8)

where
Lan(t) = (S (1)) /o (SZ,(1)),

H(SX.(1) = - / (7, () dH D (u),
(82, (1)) = - / (2, (u)) dH o, (u):

In order to investigate the estimate (6) we introduce some conditions.
For the design points x1, ..., =,, denote

Ap, = min (z; — 1), A, = max (z; — x;_1).
1<i<n 1<i<n

For the kernel 7, let
||7T||§ = / 7% (u) du, m,(r) = / u m(u)du, v=12.

Moreover, we use next assumptions on the design and on the kernel
function: L
(A1) Asn — o0, z, = 1, Ay, = O(%), A, — A, = 0(%).

8
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(A2) 7 is a probability density function with compact support
[-M, M] for some M > 0, with mi(r) = 0 and |r(u) — ()] <
C(7) lu — |, where C(7) is some constant.

Let Ty, = inf{t > 0 : Hy(t) = 1}. Then Ty, = min(Tr,,T¢a,).
For our results we need some smoothnees conditions on functions H(¢)
and H, ;1)(75). We formulate them for a general (sub)distribution function
N.(t),0<z<1,t€ R and for a fixed T > 0.

(A3) %Nw(t) = N.(t) exists and is continuous in (z,t) € [0,1] x
[0,T7.

(A4) gTZNT(t) = NJ/(t) exists and is continuous in (z,t) € [0,1] x
[0,77.

(A5) af—;Nw (t) = N.(t) exists and is continuous in (z,t) € [0,1] x
[0,T].

(A6) % = ¢! (u) and 825‘%") = !(u) are Lipschitz in the -

u x u ‘, !
direction with a bounded Lipschitz constant and a§+;§u) = ¢ (u) exists
and is continuous in (z,u) € [0,1] x (0, 1].

Under conditions (A1)-(A6) we derive an almost sure representation
result of the difference Fjp(t) — Fy(t) with rate and weak convergence
results for the process {(nh,)'/? [ﬁrh() - Fy(1)], 0 < ¢t < T} to the
Gaussian processes.

References

1. R.B.Nelsen, An Introduction to Copulas, Springer, New York, 1999.

2. A. A. Abdushukurov, Nonparametric estimation of distribution function
based on relative risk function, Commun. Statist.: Theory and Methods
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Stability analysis of retrial queueing systems based
on the synchronization method

L. G. Afanaseva'

!Moscow State University, Moscow, Russia, 1.g.afanaseva@yandex.ru

We consider two retrial queueing models M; and Ms in which pri-
mary customers arrive according to a regenerative flow {X (¢),t > 0} of

(© Afanaseva L.G., 2018
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rate Ax (Afanaseva and Bashtova [2]). Let {0;}%2, be a sequence of re-
generation points for X (t), 7; = 6,41 — 0; is the j-th regeneration period
and fj = X(0j+1) - X(Gj) (j =01, .., 0g = 0) Assume E7; < o0,
E¢& < oo then w.p. 1

. X(t) _E&
Ax = flizgo t o En '

There are m identical servers in the systems and service times form
a sequence {n, 5 ; of independent identically distributed (iid) random
variables with c.d.f. B(z) and finite mean b = fooo xdB(x). An arriving
customer finding one or more servers idle obtains service immediately.
Customers who find all servers busy go directly to the orbit and start
generating requests for service. For the model M; we assume that the
flow of requests for service from the orbit is a doubly stochastic Poisson
process (DSPP) (see Grandell [3]) with a random intensity v(Z(t)). Here
Z(t) is the number of customers on the orbit at time ¢. If there is an idle
server at time of the request from the orbit then the service one from
Z(t) customers begins.

In the model M> the repeated requests are realized through iid ran-
dom intervals {¢,}5°, with E(, = v~! independently of the number
of customers on the orbit. Thus, the rate of the flow of the repeated
requests is a constant that is equal to v. For the both models M; and
M, we consider a stochastic process ¢(¢) that is the number of customers
in the system at time t. We will call this process a stable one if there
exists the limit

lim P(q(1) < z) = B(z),

where ®(z) is a d.f. not depending on any initial state of the system.

Condition 1.
P(fl =0,71 > 0) +P(§1 =17 -t > 771) > 0,

where 01 + t; — is the arrival time and 7, the service time of the unique
customer on the regeneration period (61, 6s).

Note, this condition provides the hit of the process ¢(t) to zero state
from any initial state of the system with positive probability.

Condition 2. For the model My the random variable (,, has the
second exponential phase.

10
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This means that
o =¢V + ¢,

where Q(ll) and C,(LQ) are independent random variables and
PP >z)=e" ~>0.
Under Condition 1 the process ¢(t) is a regenerative one for the model
M and for the model M it is valid under additional Condition 2.

Stability Theorem for the Model M,
Let N(t) be a counting process for the sequence {(,}°2, i.e.

N(t):max{k>o;§k:gj gt}.

J=1

Consider m-server system with refusals and a regenerative input flow
U(t) = X(t) + N(t), i.e. Reg|G|m|0. Let n(t) be the number of busy
servers at time ¢ in this system and

lim P(n(t) =5) =p;. j=0,1,...,

k—o00

where {t;}7°, is the sequence of moments of jumps of the input flow
U(t). We define the traffic rate for the model M as follows:

Ax
Ax + I/)(l —pm).

022(

Theorem 1. Let Conditions 1 and 2 be fulfilled. The process ¢(t) is
a stable one iff po < 1.

The proof is based on synchronization of X (¢) and auxiliary process
Y (t) that is the number of served customers up to time ¢ in the auxiliary
system Ms in which always there are customers on the orbit.

Corollary 1. Let X(¢) and N(¢) be Poisson processes with rate A and
v respectively. Then ¢(¢) is a stable process iff

an—:l ol
A 520 i (1)
A+v n a_j’
=

11
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where a = b (A +v).

Stability Theorem for the Model M;
Theorem 2. Let Condition 1 be fulfilled. The intensity of repeated
requests is nondecreasing function v(j) and lim v(j) = co. Then ¢(¢) is
j—)OO

a stable process iff

Ab
p=—<1
m

Now consider the case

lim v(j) =v < 0. (2)
Jj—oo
Corollary 2. Let X (t) be a Poisson process, v(j) is non-decreasing

function and (2) holds. Then for the model M; the necessary and suffi-
cient condition is of the form (1).

Conclusion. We considered the generalization of the classical retrial
systems. The pioneering studies of retrial queues present the concept of
"retrial time" as an alternative to the models of telephone systems queues
with refusals (see [2] and literature there). It was assumed for retrial
models that each customer on the orbit generates a flow of repeated
request independently of the rest customers in the retrial group. Thus in
the classical retrial policy we have for the model M; the intensity v(j) =
v;j. The second class contains models with constant retrial rate. This
constant retrial policy was introduced by Fayolle [5]. Since Fayolle, there
has been a rapid growth in the literature (see e.g. [4], [6]). Our model M;
belongs to this class but we assume that input flow is a regenerative one
and intervals between repeated requests from the orbit have an arbitrary
distribution.
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Optimal portfolio construction with two-sided
weight constraints and commission

M. S. Al-Nator', §. V. Al-Nator'?

!Financial University under the Government of Russian Federation,
Moscow, Russia, malnator@yandex.ru,
Zsalnator@yandex.ru

We consider the problem of finding the optimal portfolio with two-
sided constraints for weights and with commission under certainty. For
the Markowitz model (portfolios without short positions) a complete ef-
ficient algorithmic solution of the problem is proposed. A heuristic effi-
cient algorithm for solving this problem for the Black’s model (portfolios
with short positions) is also proposed. Under uncertainty the financial
analyst usually considers the most likely scenarios of the possible comple-
tion of the transaction. In that case, the analysis of individual scenarios
is carried out under certainty. The condition of certainty means that
the investor knows both the current and future prices of assets (based
on price forecasts) and income. The investigation of portfolio transac-
tions under certainty is definitely useful and widely used by accountants
and auditors in the analysis of closed transactions. It is significant that
unlike the ideal case without commission, the task of choosing the op-
timal portfolio for Black’s model is nonsmooth. Portfolio analysis with
commission under uncertainty was investigated in detail in [1, 2].

In what follows, we consider one-period portfolio transactions with
a fixed and finite investment horizon. In addition, we consider only the
investment portfolios i.e. portfolios for which the proceeds from the short
sales do not cover the costs of opening the long positions of the portfolio.
For simplicity, assume that the dividends will not be paid separately.
Note that under certainty the rational investor chooses portfolio with
the highest return.

© Al-Nator M.S., Al-Nator S.V., 2018
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Suppose that we have n assets A;, ..., A,. Let r; denote the price
return of Ag. The portfolio will be denoted by the vector of asset weights
x = (21,...,%n) D pq @k = 1 (the budget constraint). If there are no
commission costs, it is well known that the portfolio return r(x) is the
weighted average of the individual asset returns r(x) = >.7_ | ) .

The investor can not quite arbitrarily choose these weights for two
reasons. First, the portfolio weights must satisfy the budget constraint.
Secondly, in many markets there are strict limitations on the size of
short, positions. For example, institutional investors such as insurance
companies, pension funds and some credit institutions are obliged to
adhere to legislation requirements for assets weights of different classes
(such as government securities, shares of companies, real estate etc.).

Specifying the class of admissible portfolios defines a particular opti-
mization problem. Usually this class is defined by a system of equations
and inequalities.

First we consider the problem of selecting the optimal portfolio with
two-sided constraints and no commission. This problem is not trivial,
but not difficult to solve in practical terms (see Remark 3 below). This
problem is formulated as follows.

Problem 1. For given returns r1, ro, ..., 7, and a = (a1, ...,an),
b=(by,...,bn)

maximize r(x) =r1x1 + 12T+ ...+ 1 Ty (1)

subject to 1 +x24+...4+2, =1 and (2)

a1 <21 <by, ax <2< by, ...;0n < xp < by (3)

The following theorem contains the necessary and sufficient condition
for the solution existence of problem 1. Let A =a; + a2 + ...+ a, and
B=bi+by+...+0b,.

Theorem 1. The problem 1 has a solution if and only if A <1< B.
Moreover, when A # B an admissible portfolio can be found by the

formula
r=a+ <;__244) (b—a).

If the portfolio transaction is opened with a commission « and closed
with a commission 3, then according to [1], [2] the portfolio return has

14



XXXV International Seminar on Stability Problems for Stochastic

Models
the form
1 n n
Tap(®) = ————— <Z T Th — Z(a + B8+ Bry) |]‘k|> . @)
k=1 k=1

n
1+a > |zl
k=1

Now consider the case when the investor can open only long positions
(the Markowitz model), in other words, the investor forms portfolios
with non-negative weights. In that case, the optimization problem 1 is
formulated as follows

Problem 2. For given returns 1, 7o, ..., 7, and a; > 0, b; < 1,4 =

1,2,...,n

)

maximize 74.3(€) = aa,g7(x) — ba,p

subject to (2) and (3), where aq g = };—g, ba,g = %

Recall that the linear function (note that the portfolio return is a
linear function of the portfolio weights) has the largest value on the
boundary of the function domain. Since there is one equality constraint
and 2n inequality constraints, then, at least, n — 1 components of the
optimal portfolio must satisfy the boundary conditions. The solution of
Problem 2 (under the conditions of Theorem 1) may be found effliciently
by the following general algorithm (the Swap Algorithm). Suppose that
for an admissible portfolio @ there exists a pair of components x; and
x;, that do not satisfy the boundary equalities, let for example z; < b;
and a; < x;. Assume also that r; < 7;. Then the swap (or exchange)
of the assets A; and A; is possible. This swap allows to increase the
portfolio return. The main idea of the swap is to sell an amount (not
necessary integer) of the asset A; (i.e., we decrease the weight z; by a
certain amount & > 0) and to buy A; on the amount of revenue from the
sale of A; (i.e., we increase the weight x; by the same amount h > 0).
It is easy to see that the swap preserves the budget constraint. Note
that the swap will preserve the boundary conditions, if h satisfies the
inequalities a; < x; — h and x; + h < b; or, equivalently h < z; — a;
and h < b; — x;. The swap increases the portfolio return by the value
Ary; = hagpg(ri —rj) > 0. At the same time the extremal swap with
h = min{z; —a;,b;—z;} gives the greatest growth of the portfolio return.

Remark 1. If all assets have the same return: r1 =r9 = -+ =1, =
ro then for the Markowitz model all portfolios have the same return
Ta,3(X) = aa,pT0 — ba,p. In that case, the investor is indifferent to
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the choice of a particular portfolio, provided that the received return is
positive and satisfactory for the investor.

Remark 2. Let r; = | max {rx} and b; = 1. Then the Problem 2

admits a trivial solution. Namely, the investor invests all the money in
the asset A; with the highest return, provided that the received return
is positive and satisfactory for the investor.

Let us consider the case when the investor can open short positions
(the Black’s model). Then the optimization problem 1 is formulated as
follows

Problem 3. For given returns r1,72,...,7, and a = (a1,...,a,),
b= (b1,...,b,) maximize r, g (see (4)) subject to (2) and (3).

Under the conditions of Theorem 1, the Problem 3 always has a
solution, since one seeks the maximum of a continuous function on a
compact set. Note that the return of the optimal portfolio should be
positive and satisfactory for the investor.

To solve this problem, we propose the following heuristic algorithm.
Renumber the assets so that their returns are located in nonincreasing
order: r; > 19 > ... > 1,. Apparently, in a typical situation the optimal
portfolio * = (z7,z3,...,z}) has the following property: there is a
k such that z7, x5, ..., z;, > 0 and z,, ..., , < 0. This allows
to reduce the solution of the Problem 3 to the solution of n smooth
problems. Namely, for each £ = 1, 2, ..., n we solve the Problem 3
under the conditions that =i, z2, ..., zx > 0 and zg41, Tryo, .-,
5, < 0 and then we choose the solution with the highest return from the
resulting n solutions.

Remark 3. If a = 8 = 0 then the Swap Algorithm is applicable
to Black’s model. Moreover, for the Markowitz model, the solution of
Problem 2 coincides with the solution of a similar problem without com-
mission.
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Multi-period Markowitz model and optimal
self-financing strategy with commission

M. S. Al-Nator', S. V. Al-Nator'?, Yu. F. Kasimov'?>

!Financial University under the Government of Russian Federation,
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The goal of any financial transaction in the securities market is to
achieve maximum income and to increase the initial capital. Optimal
portfolio selection problem is one of the basic research fields in modern
financial economics especially in the theory of portfolio analysis. In
multi-period portfolio transactions with transaction costs the problem
of portfolio selection becomes nontrivial and more hard to solve. In this
work for the Markowitz model (only long positions are allowed for this
model, see [1, 2]) we solve the problem of choosing the optimal multi-
period self-financing portfolio strategy with commission under certainty
(we give a complete proof for this solution). In other words, we are
looking for a strategy for which all the released money from the sale of
some assets will be invested in the acquisition of other assets in order to
maximize the portfolio value at the end of the investment horizon.

We emphasize that the solution of this problem is nontrivial and
may differ from its solution without commission. One-period portfolio
analysis with commission under uncertainty was investigated in detail
in [3, 4].

Let the market consist of n assets A, As, ..., A,. The portfolio at
time ¢t will be denoted by the position vector z(t) = (21(t), 22(t), ...,
zn(t)), where zx(t) > 0 is the position of Ay (note that zg(t) is the
amount of Ay, in the portfolio at the time t). Let pg(t) be the asset price
of Ay at time t. Then the market state at any time ¢ is specified by the
n-dimensional price vector p(t) = (p1(¢),p2(t),...,pn(t))-

In what follows, we consider multi-period portfolio transactions with
fixed and finite investment horizon. We assume that changes in asset
prices occur only at discrete instants of time.

By strategy we mean a sequential restructuring of the portfolio
(formed at the time #; = 0 with an initial capital) at the moments
t = to,t1,...,tN, in order to maximize the portfolio value at the time
tny. We denote the strategy by

Zitoen) = {2(t0), 2(t1), -, 2(tn 1) }- (1)
© Al-Nator M.S., Al-Nator S.V., Kasimov Yu.F., 2018
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The strategy Zp, ;) is called admissible if all the released money from
the sale of some assets is invested in the acquisition of other assets.
The optimization problem with commission « is formulated as fol-
lows: 4
For the investment horizon [to, tn] and the price forecast [py (tz)];fzol]x
find a strategy

Z[’;MN] ={z"(to),z"(t1),..., 2" (tn-1)} (2)
that satisfies at any time t;, i = 1,..., N the balance equation
sz i—1) Pr(t Z +aZ|zk — 2k (ti-1)lpr(ti) (3)
such that
(z"(ty-1),p(ty)) = max (z(tn-1),p(tn)), (4)
[to,tN]

where (, ) is the standard scalar product in R"™.
We need the following notation to describe the optimal strategy con-
struction scheme:

pr(tiv1) R —
ti t; ——— k=1n,1=0,N—-1,
ck(tistivr) = o)

Il
\’b—‘
E
<

Il
L

=
\.b—‘

Cmax (tza tz+1) = 1@1?2(17 Ck (t@, tlJrl) k

Wi (tis tivr) = Me(tigr)er(tis tiv1), k=1,n, i=0,N — 1,

Wiax(ti, tiv1) = max w(tis tiv1), i =0,N —1,
SKRSNn

Pkt tit) = Gawmax(ti, tiv1) — wi(ti, tiv1), k=1,n, i=0,N —1,

where a, = (1 — a)(1 + ).

The optimal strategy is constructed in the direction from the end of
the investment horizon to its beginning:

1. For each t;, select the asset A, with wy, (£, tir1) = Wmax(ti, tit1)-
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2. For each k = 1, n calculate pg(t;, tiy1).
2.1. If pr(ti, ti+1) < 0 then the position zx(t;—1) of Ay is not changed
under the transition z(¢;—1) — z(¢;). In that case set

A (ts) = wi(ti, tiv1) = cr(ts, tiva) Ae(tiv1)-

2.2. If pr(t;,tix1) > 0 then sell all units of the asset Ay and invest
the money from its sale in the asset A,,. In that case set

)\k (tl) = OGq Wmax (tia ti+1)~
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Limit theorems connected with cells
from a pointed set

M. Alhuzani', A. N. Chuprunov'
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Let n, N be integer numbers. The term homogeneous allocation
scheme of n distinguishable particles by N different cells will be used for
the random variables 7, ..., ny with the joint distribution

n!

1 n
P{m:kl,...,nN:kN}:m(ﬁ) ’

where ki, ko, ..., ky are nonnegative integer numbers such that k; +
ko + ...+ kny =n. Denote o = }V—L

(© Alhuzani M., Chuprunov A., 2018
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Let K be an integer number such that 0 < K < N. Let r be a
nonnegative integer number. We will consider the random variable

(n,K,N) Zl{m_,}

Observe that u,(n, K, N) is a number of cells from the first K cells which
contain r particles.

Theorem 1. Let 2 <r and N, K, n — oo so that K p, — A\, where
0< A< oo and % <C,0<C < 1. We will suppose that

e
ea—r < (Ci, where C; <oo, and N—>O.

Then we have

k

P{u.(n,K,N) =k} =e 14+0(1)), k=0,1,...

w

Consider the random variable

NK,N) = 11<na<)§{ -

Observe that 7k ny) is a maximal value of a cell from the first K cells.

Theorem 2. Let r > 3. Suppose that N, K, n — 0o so that

o «a K
- = — = Kpry1r — A, — ,
. 0, N 0, Pr+1 N<C

where C <1 and 0 < X\ < co. Then we have

P{n,n =1} = e +o(1), P{ngny=r+1} =1~ e +o(1).

Consider the random variable

K1) = 1§11<HK Ni-

Observe that 7k 1) is a minimal value of a cell from the first K cells.

Theorem 3. Suppose r >3, N, K, n — oo so that

K
— <C,

- —
o0
N

(6
— =0, Kp.—1— )
r ’ N ) Pr—1
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where 0 < A < 00, 0 < C < 1. Then we have
P{nkny=r—1}=1- e +o(1), P{nk .y =r}= e +o(1).

Remark 1. Limit theorems for u,(n, K, N), 0k ny, 1(k,1) for the
case K = N were obtained in many paper (see [1] and the bibliography
therein). In [2] limit theorems were obtained for pg(n, K, N).

Remark 2. Let A C {1,2,...,N}, |A| = K. Denote

(n, A,N) Zl{m—r}, N(A,N) = WAX iy (A1) = 17%1;‘1 ;-
1€EA

The distributions of u,(n, A, N), nca,n) and 74,1 coincide with the
distributions of wu.(n, K,N), n ~y and 19k 1), correspondingly. So
Theorem 1, Theorem 2, Theorem 3 can be considered as theorems for
/jfr(n’ Av N)v (A,N) and NA ).
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Infinity-channel queueing system with
time-depending intensity of input. Fast and slow
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The operation of various queueing systems is of increasing interest
when the intensity of the incoming flow is high. Therefore, a lot of pa-
pers is devoted to the consideration of certain systems in conditions of
increasing intensity of the incoming flow. In the report, we consider an
infinite-channel system with heavy tails of service times. The property
of gravity of tails leads to the fact that, unlike systems with light tails

(© Bashtova E.E., Popov A.B., 2018
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of maintenance times, two different situations are possible. Namely, de-
pending on whether the intensity grows slowly or rapidly in comparison
with the rate of decrease of the tails of service times, convergence to a
stable law turns out, or, under a different normalizing factor, to a normal
law. The report is a generalization of some results of paper of Mikosch
etc. [1], in which for a system with a Poisson input flow with constant
intensity the convergence of finite-dimensional distributions is proved.

Consider a Poisson flow on R with periodic and integrable over the
period intensity A(¢). Let 7 denotes the period of A(t) and (', —oo <
k < o0) be points of this Poisson flow (such that T'g < 0 < I'y). Tt is
assumed additionally that for any ¢t € R

0 <A <A(t) SN < o0

Denote

A) = //\(y)dy, 3 = lim 20 _ AT
0

t—oo ¢ T

We consider a queueing system with infinite number of servers. At
every moment 'y a claim enters the system and then it is serving during
the time interval X;. We assume X, X1, Xo,... to be independent and
independent of input flow, identically distributed random variables and

P(X>z)=F(x)=2"%L(z), >0, 1l<a<2,

where L(z) is a slowly varying function.
Let
w=EX.

Now we introduce a scale parameter T, i.e., consider a family of
Poisson flows depending on 7', in such a way that

M) =AXOT?, B>0

for t € R.
Let Np(t) be a number of claims in the system at time ¢:

Nr(t) = Z Ir, <t<ry+x3]

k=—c0

We investigate the total cumulative input Ap(¢)

Alt) = Ap(t) = /O " N (s)ds.
22
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As T — oo then Ap(t) tends to infinity too. We will prove that cu-
mulative input can be approximated by stable law, when the connection
rate is slow. Besides, this approximation does not depend on periodicity
of A(t) and can be expressed in terms of the average value of A(t) over
period. On the other hand, for the case of fast growth of the intensity
we need another normalizing coefficient and we show that periodicity of
the intensity function plays an essential role and in this case we have for
any point z € [0,7) its own normal law as a limit.

Introduce a quantile function

b(t) = (%)F (0),

9 (y) = inf{z : g(x) > y}.

b(t) is a regularly varying function with parameter %
We say that the Fast Growth Condition is fulfilled if

where

b(\rT)

1 —_—— =

T—o0 T

We say that the Slow Growth Condition is fulfilled if

lim 227D _ g
T—o0 T
Remarks. Fast Growth Condition is fulfilled if 5 > «. Slow Growth
Condition is fulfilled if 8 < «.

Introduce AT ACT
XNT)T3F(T)
Theorem. It follows from Fast Growth Condition that for any z €
[0, 7]
A*(nt+ 2) A N(0,0%(2))if n — oo,
where

o?(z) = 07 + 03(2) + 03,
0'2 = —05
L 2-a)3—-a)
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A
O'S(Z) = oco_ ?
(B—a) [ F(u) Az —u) du
0
o = A

(3—a) [ F(u) A\(—u) du.

Theorem. It follows from Slow Growth Condition that

i AL —pAMT) 4

where ‘ T
EeifXa — exp{ _ |9|a(1 — i -sign(f) tg 7)}»

i.e., X, has a-stable distribution.
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On the deficiency concept in statistical problems
based on the samples with random sizes
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1. Introduction and summary

An interesting quantitative comparison can be obtained by tak-
ing a viewpoint similar to that of the asymptotic relative efficiency
(ARE) of estimators, and asking for the number m(n) of observations
needed by estimator d,,(n)(X1,..., Xy n)) to match the performance
of 6%(X1,...,Xn) (based on n observations). Although the difference
m(n) — n seems to be a very natural quantity to examine, historically

(© Bening V.E., Kornievskaya A.A., 2018
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the ratio n/m(n) was preffered by almost all authors in view of its sim-
pler behaviour. The first general investigation of m(n) — n was carried
out by Hodges and Lehmann [1]. They name m(n) —n the deficiency of
0, with respect to 4, and denote it as

d, =m(n) —n. (1.1)

If lim,,—, o d, exists, it is called the asymptotic deficiency of 4,, with
respect to J; and denote as d. At points where no confusion is likely, we
shall simply call d the deficiency of J,, with respect to §;.

The deficiency of J,, relative to 6} will then indicate how many ob-
servations one loses by insisting on §,,, and thereby provides a basis for
deciding whether or not the price is too high. If the risk functions of
these two estimators are

2 . . 2
Rn(e) = E9 (577 - g(e)) ’ Rn (9) = E9 (6n - 9(9)) ’
then by definition, d,,(8) = d,, = m(n) — n, for each n, may be found
from

In order to solve (1.1), m(n) has to be treated as a continuous variable
(see [1]). Generally R} (6) and R, (0) are not known exactly and we have
to use approximations. Here these are obtained by observing that R} ()
and R, (0) will typically satisfy asymptotic expansions (a.e.) of the form

a(0) | bO)

* —(r+s)
R = i + o(n ). (1.3)
a(e) 0(9) —(r+s)
R ==+ oy Ho(n™), (1.4)

for certain a(#), b(#) and c(f) not depending on n and certain constants
r >0, s > 0. The leading term in both expansions is the same in view of
the fact that ARE is equal to one. From (1.1)—(1.4) is now easily follows
that (see [1])

c(6) — b(9)

_ (1—s) (1-5)
dn.(0) = ra®) " + o(n''%). (1.5)
Hence
+o0, 0<s<,
ao)y=a={ - b(e), s=1, (1.6)
ra(f)
0, s>1
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A useful property of deficiencies is the following (transitivity): if a third
estimator d,, is given, for which the risk R,(¢) also has an expansion of
the form (1.4), the deficiency d of d,, with respect to 07 satisfies

d = dy + da,

where d; is the deficiency of J,, with respect to 6, and ds is the deficiency
of d,, with respect to J.

The situation where s = 1 seems to be the most interesting one.
Hodges nad Lehmann [1] demonstrate the use of deficiency in a number
of simple examples for which this is the case (see also [3]).

In the communication, we discuss the number of applications of the
deficiency concept in the problems of point estimation and testing sta-
tistical hypotheses in the case when number of observations is random.

2. Estimators based on the sample with random size

Consider random variables (r.v.’s) N1, Na, ... and X1, X, ..., defined
on the same probability space (2, 4,P). By X1, Xs, ..., X,, we will
mean statistical observations whereas the r.v. N, will be regarded as
the random sample size depending on the parameter n € N. Assume that
for each n > 1 the r.v. N,, takes only natural values (i.e., N,, € N) and is
independent of the sequence X1, X5, ... Everywhere in what follows the
r.v.’s X1, Xo, ... are assumed independent and identically distributed
with distribution depending on § € © € R.

For every n > 1 by T,, = T,,(X1,..., X,,) denote a statistic, i.e., a
real-valued measurable function of X, ..., X,,. For each n > 1 we define
arv. Ty, by setting T, (w) = Ty, (w)(X1(W), s X, () (W)), w € Q.

Theorem 2.1.

1. If 6, =0,(X1,...,X,) is any unbiased estimator of g(0) that is,
it satisfies

Epon, = g(0), 6€0O

and on, = 0n, (X1,..., XN, ), then
Eodn, =9(0), 0€06.
2. Suppose that numbers a(0), b(#) and C(#) > 0, o > 0, r > 0,
s > 0 exist such that

;) - 40 2O

nr nr+s

c(6)

= nrtsta’

where )
RZ(H) = Eg (577:(X15 e aX") - g(e)) )
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then

Rn(0) — a(@)EN" — b(O)ENTT—*

< CO)EN, 757

where
2

Rn(ﬁ) = Eg(éNn(Xl, . ;XNn) —g(@)) .

Corollary 2.1. Suppose that numbers a(6), b(0) and r > 0, s > 0
exist such that

R:l(e)EE9(5n(X1,...,Xn)—g(9))2: +

then

Ro(0) = Bo (O, (X1, .., Xn,) — g(6))°

= a(@)EN;" +b(0)EN,; "5

Let observations X, ..., X, have expectation Eg X; = g() and vari-
ance Dy X1 = 02(0). The customary estimator for g(f) based on n ob-
servation is

1
On = EZXi. (2.1)
This estimator is unbiased and consistent, and its variance is

o(0)

R*(0) = Dy b, = (2.2)

If this estimator based on the sample with random size we have (see
Corollary 2.1)

R,.(0) =Dy on, (X1,...,XnN,) =0*(0)EN, . (2.3)

If g(0) is given, we consider the estimator for o2(f) in the form
> (X — g(6))*. (2.4)

This estimator is unbiased and consistent, and its variance is

Ry =Dy, = 10T CO o) ey (g0 (29
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For this estimator with random size one have
Ry (0) = Dgdn, (X1,...,Xn) = (1a(0) — o*(0)) EN, . (2.6)

In the preceding example, suppose that g(6) is unknown but that instead
of (2.4) we are willing to consider any estimator of the form (see (2.1))

oM =4, = &), vER 2.7
< nJWE; y (2.7)

If v # —1, this will not be unbiased but may have a smaller expected
squared error that the unbiased estimator with v = —1.
One easily find (see [1], (3.6) and [2])

RZ(G) _ 0_4(9) |:M4(9)/0—4(9) — 1+

n

L2 20 D@0 ] o, g
Using Theorem 1.1, we have
Ru(8) = Eg (bn, (X1,..., Xn,) — 02(0))" =
= o'(0) [(na(6) /o (0) — DE N+
{12 +2-2 (1 +1) (u(6)/04 ()~ D} EN2| +O(EN?). (2.9)

3. Deficiencies of some estimators based on the samples
with random size

When the deficiencies of statistical estimators constructed from sam-
ples of random size N,,(,) and the corresponding estimators constructed
from samples of non-random size n (under the condition EN, = n)
are evaluated, we actually compare the expected size m(n) of a random
sample with n by virtue of the quantity d, = m(n) — n and its limit
value.

We now apply the results of section 2 to the three examples given in
this section. Let M,, be the Poisson r.v. with parameter n — 1, n > 2,
ie.

—n (n_l)k
P(Mn:k):e(l )T, ]CZO,l7
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Deﬁne the random size as N, = M,, + 1, then EN,, = n and EN,;1 =

L4 L 4 0(n™?). The deficiency of dy, relative to &, (see (2.1)) is given
by (2 2) (2.3), (3.1) and (1.6) with r = s = 1, a() = %(0), b(d) = 0,
c(0) = 0*(9), and hence is equal to d = 1. Similarly, the deficiency
of &y, relative to &, (see (2.4)) is given by (2.5), (2.6) and (1.6) with
r=s=1,a(0) = c(d) = us(0) — a*(), b(d) = 0, and hence is equal to

d = 1. Consider now third example (see (2.7)). We have EN;? ~ %,

n — oo. Now the deficiency of oy, relative to 0, (see (2.7)) is given
by (2.8), (2.9) and (1.6) with » = s = 1 and hence is equal to d = 1 and

the deficiency of 0y ) relative to 5(72) (see (2.7)) is given by (1.6) with
r=s=1and hence is equal to

Mty +2
e = 0= (-1 )

These examples illustrate the following

Theorem 3.1. Suppose that numbers a(0), b(0) and k1, ko exist such

that O b0)
* a —
R (9) T + F = O(Tl 2)
and
_ 1 kq _ _ ko _
EanngrﬁJfo(” %), ENn2=ﬁ+0(” %),
EN,:3 = o(n_Q),

then the asymptotic deficiency of on, (X1,...,XnN,) with respect to
0n(X1,...,Xy) is equal to

k1 a(6) + b(6) k2 — b(6)

4(6) = a(0)
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Performance modeling of finite-source retrial
queueing systems with collisions and blocking
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In this paper we investigate a single-server retrial queueing system
with collision of the customer and an unreliable server (J.S.Kim [2]).
The results are provided by the help of software tool MOSEL-2
(T.Bérczes, J. Sztrik, A. T6th, A. Nazarov [1]). The number of sources of
calls is finite and collision (Nazarov and Kvach and Yampolsky [3], T6th
and Bérczes and Sztrik and Kvach [4]) can take place. If a customer
finds the server idle, he enters into service immediately. The failure of
server block the system’s operation therefore the arriving customers can
not enter the system, meaning that those calls are lost. Our interest is
to give the main steady-state performance measures of the system com-
puted by the help of the MOSEL-2 tool. Various figures represent the
impact of blocking phenomenon on the main performance measures like
mean number of customers in the system, mean response time, mean
time spent in service, mean waiting time (man time spent in the orbit).
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Complex network models and generalized allocation
scheme

I. A. Cheplyukova', Yu. L. Pavlov?

!Karelian Research Centre RAS, Petrozavodsk, Russia,
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2Karelian Research Centre RAS, Petrozavodsk, Russia,
pavlov@krc.karelia.ru

We consider configuration graphs where vertex degrees are indepen-
dent identically distributed random variables with different probability
distributions. Configuration graphs were first introduced by Bollobas in
[1]. Such random graphs frequently prove useful as models of complex
communication networks like the transport, telephone, electric networks,
social relationships and the main global network — Internet (see, e.g., Hof-
stad [2]). Let N be a number of vertices in the graph. Vertex degrees
form semiedges that are numbered in an arbitrary order. If the sum of
vertex degrees is odd one extra vertex with degree one is added. The
graph is constructed by joining all the semiedges pairwise equiprobably
to form edges. Those graphs admit multiple edges and loops. Numerous
observations of real networks suggest that the distribution of degree & of
each vertex can be specified by the relation

h(k)
kT

(© Cheplyukova I.A., Pavlov Yu.L., 2018

P{¢> k) = k=1,2,..., 7>0, (1)
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where h(k) is a slowly varying function. Reittu and Norros [3] are sure
that the function h(k) in (1) does not influence limit results as N — oo
and we can replace h(k) with the constant 1. Then

P{¢=kl=kT"—(k+1)", k=12..., 7>0. (2

Recently there appeared some works where the authors note that with
the network size growth the vertex degree distributions may change and
even become random.

We consider two types of conditional configuration graphs. One of
them is a subset of graphs where the sum of vertex degrees is known
and it is equal to m. In the other subset the sum of vertex degrees
was bounded from above by n. Such conditional graphs can be use-
ful for modeling of networks for which we can estimate the number of
links. They are useful also for studying networks without conditions
on the number of edges by averaging the results of conditional graphs
with respect to the distribution of the sum of degrees. Assume that
the parameter 7 of distribution (2) depends on N or it is a random
variable. For different types of parameter 7 behaviour we find the lim-
iting distributions of the maximum vertex degree and of the number
of vertices with a given degree for various zones of convergence N and
n to infinity (see Pavlov, Cheplyukova [4,5]). The main results of this
work are limit theorems for the same degree structure characteristics of
conditional configuration graphs when the distribution of £ is unknown
and we can estimate only limit behaviour of the distribution tail. There
results were proved using the generalized allocation scheme which was
studied by Kolchin [6] and its analogue (Chuprunov and Fazekas [7]).
Our theorems can be looked as applications of this scheme in the case
of independent random variables with unknown distributions.
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Generalization of the Rao—Robson—Nikulin test
V. V. Chichagov'

!Perm State University, Perm, Russia, chichagov@psu.ru

Let the probability distribution of a random variable £ be given by
the density function fo = fo[x,0] with respect to some o-finite mea-
sure v, which is either a Lebesgue measure or a counting measure, and
6 = (01,...,05) € Oy C R? is an unknown s-dimensional distribution
parameter. There is a sample X = (X3, ..., X,,), whose elements are
independent random variables having the same distribution Fy as the
random variable €.

The problem of testing a complex hypothesis Hy : fo[z,0] € P =
{fo: fo €fo} is considered with the help of the Pearson’s chi-squared
test. In this case, the hypothesis

P(fEA]‘)ZTFj[G],GE@Q, j=1...,J—1,

is usually verified instead of Hy. Here
_ / fole, 0)v[da] = Er, In,[¢];
Aj

A1,..., Ay are atoms of a partition of the support for the distribution
of &, J > s; Ig[x] is the indicator of the event z € B.

If 6 is the known parameter, then the hypothesis H| is verified with
the help of statistics

J — NT; 1 J
Z mrj ] “n Z 5 [j@ ()

j=1 j=1 "7

(© Chichagov V.V., 2018
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where Uj is the number of sampling elements belonging to the atom Aj.

If instead of the unknown parameter 6, its maximum likelihood es-
timate 0,, is used for the sample X, then the Nikulin-Rao-Robson test
[1] is used to verify the complex hypothesis H|. If

G[o] =i[8] —cCT

is a nondegenerate matrix, then the statistics Y2 of this criterion is
defined by the equation

Y= X[10.] + 0 G [0n] O/n, 2)
where i[6)] is a Fisher’s information matrix for X, is,s, is an element of
the matrix i[0,], © = (01,...,0s) ', G[0,] = (Ge162) 55 »

1 onle) & U oom6,)]
C= . ’ U = ~ ’
<\/7Tj (] 90; >8XJ ’ ; mi(0,)  99;
J

Gerty = Uoyty — Z L O 8] 7, [On].
o 5 [On] 6951 89@2

According to [1, Theorem 2.3], if the certain regularity conditions
A are satisfied and n — oo, then a sequence of values of statistics (2)
converges to a random variable having the chi-square distribution with
J — 1 degrees of freedom x%_;. This result is the basis of the asymptotic
Nikulin-Rao-Robson test: the hypothesis Hj should be rejected with an
asymptotic significance level « if ;2 > x?__[J — 1], where x3__[J — 1]
is the (1 — a)-quantile of the distribution x%_;.

A generalization of this criterion on the basis of chi-squared statistics
Xh is proposed below. New criterion allows to verify a more general null
hypothesis than H|

H(,)/:EFO}LJ‘K]:/LJ‘[G], j:].,...,m. (3)
Here {y;[0],j=1,...,m} are the mathematical expectations for a
given set of functions {h;[z], j =1,...,m} calculated on the basis of

the hypothetical distribution F{ of the random variable £&. Note that
the null hypothesis H| corresponds to the set of indicator functions
hjla] = Ia,lz], j=1,...,J =L

Limit behavior of the test statistics xj is described by the following
statement.
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Theorem. Suppose the conditions A are satisfied and the vector func-
tion hiz] = (hi[z], ..., hm|z]) " has the following properties:

(i) the vector function 0] = (11[6],. .., um[0])" = Eghl¢] is con-
tinuously differentiable at the point 0;

(ii) the covariance matriz of the vector h[¢], Xp[0] = Vg h[], and
the information matriz (@] are continuous at the point 6;

(iii) the matrices $1,[0] and ¥[0] = i[0] — 1 [0] =, '[0] 1[6], where
[]0] = (0us(0]/06;),,. .., are not degenerate.
Then under the hypothesis HlJ, the statistics

= {(a=np) =0, (0 —np) + TP O}, (@)

u= Zh[Xi]a fo=pl0,], vi6]=p'[6]2,1(6] (wu—np), v=vi],

converges in distribution to a random variable having a distribution x2,,
when n — oo.

This result allows to construct a criterion for testing the hypothesis
HY.

Generalized Nikulin—-Rao—Robson test. Hypothesis H{ is re-
jected with asymptotic level of significance «, if x, > x3_,[m], where
xX3_,[m] is the (1 — a)-quantile of the chi-square distribution with m
degrees of freedom.

Explicit formulas for computing the statistics x; succeeded to get in
the following cases:

hjla] = nj[alla;[z], j=1,...,m, m<J, (5)
(2] [z], i=1,...,J,

hjlz] = n;lz] AJ[:L] HPI/I]' moJ<J1 (©)
IAj—J[x]’ HpH]:J+17"'ama
nj[x]lﬁj[x]’ mpu j =1,..., M,

hjlz] = { I, (2], npu j=M+1,....J, m—J<M-1, (7)
In, ;7] mpu j=J+1,...,m,

T

h[.%'] = (IAI[‘T]" .- ’IAJ71[x]vhJ[x]) (8)

It was found that one of the terms of each formulas obtained has the

form of the right-hand side of equation (1). This fact takes place in the
case of statistics (2).
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Comment. If weak regularity assumptions are satisfied, then the limit
distribution of the statistics xy, is the same as in the case when the limits
of the atoms are not pre-fixed but are chosen as data functions.

In [2]-[4], we have previously considered special cases of constructing
chi-squared tests for checking null hypothesis for the one-parameter form
HY.

Comparison of the power of the generalized Nikulin—-Rao—Robson test
for hjlz] = x Ia,[x], j=1,...,J — 1, with the power of other two chi-
square tests for checking the hypothesis about the normal distribution
law of the random variable ¢ ~ N (u; 02), will be fulfilled in the final part
of our submission. The power values for other two tests can be found in
[5]. As alternative distributions, we consider the logistic and generalized
normal distributions with 4 as the form parameter. The reason is that
these distributions are the nearest ones to the given normal distribution.
The appropriate probability density functions are defined as follows:

S
1 f1 V3

R
= e [ ] s
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Optimal control of a single-server retrial queue with
two-phase service

Z. Dahmane', A. Aissani’

!Department of Mathematics, Faculty of Science, University Blida-1,
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The retrial queuing model with a single server providing two phases
of service has many applications and has received significant attention in
the literature. One can find important applications of the two-phase ser-
vice models in multimedia communications, packet transmissions, pro-
duction lines and telecommunication systems. The paper of I. Dimitriou
& C. Langaris [2] presented an analysis of a retrial queue with two phases
of service and server vacation. Every customer was placed in a single
queue while waiting to be served. When a customer finished the first
stage of service, then, he either went to the second phase with probabil-
ity 1 — p or, with probability p, departed and joined a retrial box from
which he repeated the demand for the second phase, and left the system
after service completion.

In this paper, we consider the problem of a dynamic routing control
retrial queue with a single server providing two phases of service. Cus-
tomers arrive to the system according to a Poisson process with param-
eter A. The service for each customer consists of 2 independent phases
dy and dg, each of which has an exponential distribution with mean 1/pu.
Every customer must receive service in two phases before leaving the sys-
tem. Arriving customers join a single ordinary queue and wait to start
their service sequences in the first phase. At the end of the first phase
dy, the server may start computing the second phase dy for the same
customer or stop the actual service sequence in phase 1 and place the
customer in the retrial box. In the latter case, the server immediately
serves the next customer in the first phase. The customers in the retrial
box make a service request with respect to a Poisson process with rate
# and can receive the second phase ds only when the server is idle. The
holding cost per customer per unit time in the primary queue is ¢; and
the retrial box is c2. The goal is to find a routing policy that minimizes
the expected total discounted holding cost over infinite horizon.

(© Dahmane Z., Aissani A., 2018
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The problem of routing control in the retrial queue can be formulated
as a semi-Markov decision process in which the decision epoch is the
service completion point of the first stage d;. At a decision epoch, the
system controller must decide whether to keep the customer in service
or route him to the retrial box. When in service, the customer receives
service do and then, leaves the system. When in the retrial box, the
customer waits for a random amount of time and then, tries to find the
server available again to complete the second phase of service ds and
leaves the system. The decision is taken according to the state of the
system and the cost induced by this state and it is based essentially on
minimizing the cost of waiting in the system.

State definitions. We note that the presence of 7 customers in the
primary queue means that there are ¢ — 1 customers on hold and one
customer in service. When a customer enters service, the 2 associated
phases are served one at a time; thus, ¢ customers in the primary queue
corresponds to 24 (or 24— 1) phases (see Tijms [8], chap.2, p.104). Con-
sequently, we can distinguish between states (24, j) and (2i—1, j), where
24, (29— 1)) denotes the number of service phases yet to be completed
and j denotes the number of customers in the retrial box. Finally, the
state of the server is described as odd or even using the symbols (27 and
2i—1).

Therefore, the state space of the retrial queuing system is

S =1{(24,5),((2i —1)",5) /i,5=0,1,2,...}.

Under some regularity conditions, we prove the existence of an op-
timal policy that minimizes the expected total discounted cost of the
system. In the case of socially optimal routing policies, we show that
such a policy is described by a switching curve based on the number of
customers in the system.

We conjecture that the optimal threshold is a non-decreasing function
of the number of customers in the retrial box. The structure of our
switching curve is shown in Fig. 1. Numerical results for the optimal
threshold for different parameter values are provided and confirm the
validity of this result.

References

1. I.J.B.F. Adan, V. G. Kulkarni, N.Lee, A.A.J. Lefeber, Optimal routing
in two-queue polling systems, ArXiv: 1608.03070 (2016).

2. L. Dimitriou, C.Langaris, Analysis of a retrial queue with two-phase
service and server vacations, Queueing syst.: Theory and Applications

38



XXXV International Seminar on Stability Problems for Stochastic
Models

Stay in
service
Route to

the retrial box

Number of customersin theretrial box

2i
Number of phases in the queue

Fig. 1: The structure of our switching curve

60:1-2 (2008) Article: 111.

3. C.Langaris, I. Dimitriou, A queueing system with n-phases of service
and (n-1)-types of retrial customers, Europan Journal of Operational

Research 205:3 (2010) 638-649.

4. B.Legros, O. Jouini, Routing in queueing system with two heterogeneous
servers in speed and in quality of resolution, Stochastic Models 33:3

(2017) 392-410.

5. H.M. Liang, V.G. Kulkarni, Optimal routing control in retrial queues,
Applied probability and stochastic processes: J.G.Shanthikumar, U. Su-

mita (eds), Kluwer Academic Publishers, Boston, MA, 1999, 203-218.

6. R.D.Nobel, H. C. Tijms, Optimal control for an M~X/G/1 queue with
two service modes, Furopean Journal of Operational Research 113

(1999) 610-619.

7. Sh.M. Ross, Applied Probability Models with Optimization Applications,

Holden-Day, Inc., San Francisco, 1970.

8. H. C. Tijms, Stochastic Modelling and Analysis: A Computational Appro-

ach, John Wiley & Sons, Chichester, 1986.

39



XXXV International Seminar on Stability Problems for Stochastic
Models

Structural improvement of Esseen’s and Rozovskii’s
inequalities

R. A. Gabdullin', V. A. Makarenko?, I. G. Shevtsova?
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Let Xy, ..., X,, be independent random variables on a common
probability space (Q, F,P) with EX), = 0, EX? = 07 < oo and B2 =
> k10t > 0. Denote

1 n
02(z) = EXP1(|Xk| = 2), Ln(z) = 5 > oi(2By), z>0,
n k‘zl

1 n
pe(z) = EXP1L(|Xe| < 2), My(z) = o5 > pk(2Bn), 23>0,
" k=1
= S / e_tz/th, x €R,
27 J_ o

A, =A(Fy, ... F,) = sup |F,(x) — ®(x)].
zeR

F.(x) =P(Xy1+...+ X,, <zB,), ()

For every € > 0,y > 0 we prove inequalities

An < Cp-Lipn(e), Lia(e,y) = sup {y|Mn(2)] + 2La(2)}, (1)

0<z<e

An < Cr- Ly o(e,7), Lia(ey) = (IMale)l + sup 2Ln(2)), (2)

0<z<Le

where constants Cg = Cg(e,v),Cr = Cgr(e,v) depend only on €, 7.
These inequalities improve and generalize Esseen’s and Rozovskii’s
results [1],[2] and, according to Zolotarev’s [3] classification, can be called
natural convergence rate estimates in the Lindeberg—Feller theorem.
Similary to Kolmogorov [4], where the classical Berry—Esseen inequal-
ity was discussed, we also introduce the so-called asymptotically exact
constants in (1), (2)

Cr(e,v) =limsup sup {An(Fl, L F)/ L%m(a,y) = K} ,

=0 n,Fq,... . Fy

Cr(e,v) =limsup sup {An(Fl, L F)/e L%_n(s,fy) = é} ,
=0 n,Fq,... . Fy ’

(© Gabdullin R.A., Makarenko V.A., Shevtsova I.G., 2018
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and present their upper bounds for every € > 0 and ~ > 0.
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Uniform limit theorems for censored integrals
with application in estimation theory

L. R. Kakadjanova'
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Following [1-3], consider competing risks model, where we are inter-
ested in observing of random variable (r.v.) Z with distribution function
(d.£.) H and pairwise disjoint events { A, i € J = {1, ...,k}}, such that

k
@Y
P(HA) 1

(see, [3]). In fact, we are interested in joint properties of pairs {(Z, A(i)),
ielJ}.
Let’s introduce subdistribution functions

{H(T,Z) :P(Z < x,A(i’)), (z;4) € R x J},

for which H(z;1) + ... + H(z;k) = H(x). Here we suppose that the
pairs {(Z,A"), i € J} are censored from right and left by r.v..s Y

© Kakadjanova L.R., 2018
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and L with corresponding d.f.-s G and K and that r.v.-s {Z,Y, L} are
independent.
Observation is available the sample

s = {(Cj;xj(-o);xj(-l)y xﬁk)) J=1 n}

where
¢ = max {L;,min{Z;,Y;}}, ' =1(D), ieT=70{0},
DY = {min{Z;,Y;} < L;} U{L; <Y; < Z;},
DYV =AYV {L; <7, <Y;}, ielJ
and {Zj, L, D§O), Dj(.l), . D§k), 7> 1} consequence of independent and

identically distributed copies of aggregate {Z, L,Y, D® DM . D®1,
It is not difficult to see that d.f. of r.v. ¢ = max {L,min{Z,Y}} is

B(x) =P(( <) = K(2) [1 - (1-G(x)) (1- H))].

Note that in the sample S(™ random pairs (Z;, Ag»i)) observable only in

the case of Xj(-i) =1,ieJ.
Consider survival functionals (exponentional-hazard functions)

1— F,(x;4) = exp [ - AT(x;i)], 1eJ
and their estimators
1—F, (x;4) = exp [ — Am(x;i)}, i€ J,
where

AT(x;i):/[T;w]%, (z34) € [r, 00) x J,

nIG <axlY =1)
< n(G5) ’

Apr(2351) =

(]

% tn(z) = Ky (z) — ATy, (230),

<.
Il

1(G <z =1), Eau(2)==3 I <),

1 j=1

S|

Tln(x; 0) =

J

K,(z) =exp [— /[I’Oo) %57_’?)}
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Let £4(Q) be the space of functions f : R — R with the norm

/a f v
au={ [0}, where Q@)= [ et

/1

T

We introduce some notations from metric entropy theory in [4] adapting
to considered competing risks model.

Let hy(e) = log Njj(e,F,Ly(Q)) be the metric entropy with the
bracketing number Njj(g, F, Ly(Q)) of the class F in L£4(Q). We de-
fine also the integral of the metric entropy with bracketing as

o
T (0) = Jy (8: F: £4(Q) = / [hg(e)] *de, 0 <5<
0

Introduce F-indexed process for each i € J as

] T
Gg’z)f = / f(.]?) d(FnT(TaZ) - FT(T’Z))’ f = ]:’

where 7 < T < Tg =supz: Q(z) < 0.

Theorem 1. Suppose that F C £1(Q) and J[(]l)(l) < oo. Then as
n — 00 4
sup‘G;”)f %00, i€ J.
fer

Theorem 2. Let class F such that F C £3(Q) and J[(]Q)(l) < oo.

Then for each i € J as n — oo processes {y/n Gg)f, f € F} converges
weakly in [*°(F) to corresponding mean zero Gaussian process.

These theorems can be used for estimation of unknown parameter
6 € © CR. Let fy: R — R be some loss function and F = {fy, 0 € O}.
For example, (a) in location estimation: © = R and fy(z) = (z — 0)?
(estimating the mean); fo(x) = |2 — 0|? (estimating the median); (b) in
maximum likelihood: {hg, @ € ©} is a family of densities and fp(z) =
—log hg(x). We estimate 6 by M-estimator

0, = Arg max {/fg(a“) dFm(x;i)}.

(031)€OX J

Assume that 6, exists. Then under mild conditions on class F, from
theorems 1 and 2 one can obtain a strong consistency and asymptotical
normality properties of estimator 6,,.
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Now consider situation in which {f¢, h € H, 6 € ©} is given col-
lection of measurable functions f 9 : R — R indexed by parametrical
sets H and ©. For estimator ,, we prove that

sup ‘GS’) (fr.6. = fno) ‘5 0, i€J, n— oo (1)
heH

The result (1) helps to derive the limit behaviors of estimators
{Fnr(:;1) fr,0,, © € J} by using decomposition

VI [For(+50) frio, — Fr(551) fae] = (el (fh.0, — fro)+
+ G fro+ vV For(59) (fre, — fre), i€
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Programmed control with probability 1 for
stochastic dynamical systems
E. V. Karachanskaya'®

!Far Eastern State Transport University, Khabarovsk, Russia,
elena_chal@mail.ru

A first integral for stochastic equations. Let (Q, F, {F;}I,P) be a
probability space with filtration. Suppose that « is a vector with values
in R, := R™, W(t) is an m—dimensional Wiener process, v(At; Avy)

(© Karachanskaya E.V., 2018
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is the standard Poisson measure on [0,7] x R™ whose values are inde-
pendent Poissonian random variables on disjoint intervals and sets. The
one-dimensional Wiener processes Wi(t),k = 1,...,m, and the Pois-
son measure v([0;T]) are defined on the above-mentioned probability
space, Ji-measurable, and mutually independent. Note that the ran-
dom functions appearing below are F;-measurable and adapt with the
above processes.

Let us consider a system of stochastic differential Ito’s equations
(from now on we use summation convention for repeated indices)

dXi(t) = a;(t, X (t)) dt + b (¢, X (t)) AWy (¢)
[ s xoadna. @

~

X(0)=Xo, i={1,..,n}, n>2,

under conditions a;(t, X) € C,}”Il, bi;j(t, X) € Ctly’j, gi(t, X,7) € C'tlﬁvl,
X = (X1,..., Xn).

Refer to a random function S(¢; X;w) defined on the same prob-
ability space as a solution to (1) as a stochastic first integral of the
jump diffusion equations system (1) if the following condition holds [1]:
S(t, X (t, Xo,w)) = S(0,Xp) (P—a.s) for all solution X (t) = X (¢, Xo,w)
to system (1).

In case when we consider only one realization, a function s(¢t; X) =
S(t; X;0), @ € Q is called a first integral of the system (1).

A non-random function s(t; X) € Cflf is a first integral of system (1)
if and only if it satisfies the conditions [1]:

Ist; X)  Os(tX)1 1 L 0bi( X))
B e {al(t,X)—ijk(t,X)4axj | =0;
Ot X) _ _
2. bik(t; X) e =0, forall k={1,...,m};

3. s(t; X) — s(t;X + g(t; x; ’y)) =0 for all v € R,.

A generalized It6—Wentzell formula. This result we obtained us-
ing by a Generalized [t6—Wentzell formula or It6—Wentzell formula with
oOF(t, X
Jumps (2). Let us note: dx,F = gT)‘X:X(tY)

F(t, X(,Y)).

for any function
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Generalized Ito—Wentzell formula [1,3]: Let X (¢,Y) € R™ is a solu-
tion for SDE (1) and F (¢, X (¢,y)) is a stochastic process, F'(t, X ) € Ctlg?
Suppose that a random function F'(t, X,w) satisfies the equation

d F(t, X) = Q(t, X)dt + Dy (t, X)dWi(t) + / G(t, X, 7)v(dt, dy)
R,

under conditions: Q(t, X) € Ci’f, Dy(t,X) € Cflf, G, X,v) € Ctlfvl
Then it holds:

deF(t, X (t,Y)) = Dy(t, X (£,Y)) + b; n(t, X (t,Y)) Ox, F) dWi(t)
+(Qt, X (t,Y)) +a;i(t, X (t,Y)) Ox, F + bi1(t, X (t,Y)) Ox, Dp+
+ 27 bk (, X (6, V)b (8, X (8,Y))0%, x, F) dt

+ Gt,X(t,Y)+ gt X(tY),y)) v(dt, dy)
R’Y

+/R [F(6X(5Y) +g(t, X(5Y), 7)) — F(t X Y)] v(dt,dy). (2)

~

Construction of the differential equations system. The conditions
for a first integral above allow us to construct a system of stochastic dif-
ferential Ito’s equations (as well as non-stochastic differential equations
system) which has a function s(t, X (t)) as a first integral [2]. This is
proved be the statistical modeling of random processes with invariants
[4].

Programmed controls with probability 1 for a dynamical system.
Now we can apply our results to control problem for dynamical systems.

A programmed control with probability 1 is called a control of
stochastic system which allows to preserve a constant value with prob-
ability 1 for the same function which depends on this system’s position
for any long time periods.

Consider the stochastic non-linear jump diffusion equations system:

dX(t) = (P(t; X (1)) + R(t; X (t)) - u(t; X (t)))dt

+B(t;X(t))dW(t)+/R E(t; X(t);y) v(dt; dy),  (3)

where P(-), R(-) are given matrix functions and B(-), Z(-) are given or
unknown ones. For such systems we construct the programmed control
u(t; X(t)) with probability 1 (PCP1) which allows the system (3) to
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be on the given manifold {u(t; X(¢))} = {u(0; Xo} for each ¢t € [0;T7,
T < 0o. The programmed control u(t; X (¢)) is solution for the algebraic
system of linear equations.

Example. Let us construct a PCP1 for a dynamical system

dX1(t) = (X1(t) + Xa(t) + e +ur(t, X (t))) dt + by (t, X (t))dW (t)

+/R g1(t, X (t); ) v(dt, dv),

~

dX5(t) = (X1(t)Xa(t) + e +ua(t, X (1)) dt + ba(t, X () AW (t)
+ [ oalt X (O (dt, ),
R

~

so a relation s(t, X (t) = X (t)e=2X1®) = 5(0, X (0)) = sp holds.
Then we obtain:

- filt X (1)
ult, X(0) = = F0 X0 + 2 folt, X(O) X
+205,(t: X (1) e 0O = Xy (1) = Xo(t) — e,

_ 2 f1(t X(1)) Xa(t) 2t
uz(t,X(t)) - _fg(t,X(t)l) +2f3(t ;( )) Xg(t) - Xl(t) XQ(t) —€ 2 3

b1(t, X (1)) = qoo(t, X (1)) e72¥1 (1),
ba(t, X (1)) = qoo(t, X (£)) 2 Xo(t) e 2510
g1(t; X (1);7) = 0.5 In [2 + 1] — Xy (1),
ga(t; X (1);7) = 2 Xo(t) ye 2110,

Fig. 1 shows one sample trajectory of the random process X (t) (three
coordinates; horizontal line indicates values of the functions s(t, X (tx)).
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Fig. 1: Sample trajectory of the random process X (t) (coordinates, values of
the first integral)

4. T.A. Averina, E. V. Karachanskaya, K. A. Rybakov, Statistical analysis
of diffusion systems with invariants, Russian Journal of Numerical Anal-
ysis and Mathematical Modelling 33:1 (2018) 1-13.

Quality of service estimation in telecommunication
system with nonhomogeneous input flow

Yu. S. Khokhlov!

'Moscow State University, Moscow, Russia, yskhokhlov@yandex.ru

The problem of quality of service estimation is the most impor-
tant one in telecommunication systems analysis. In our previous work
(Khokhlov, Lukashenko, Morozov [2]) using the methodology proposed
in the paper of Norros [1] we propose some lower asymptotic estimate of
the overflow probability of large buffer when the input is a stream con-
sisting of two independent components: the fractional Brownian motion
and stable Levy motion with same Hurst parameters. Now we consider
the case of different Hurst parameters.

We consider the single-server fluid queue which is fed by the following
input process: A(t) = mt+o1Bp, (t)+02L4(t), t > 0, where where m >
0 is the mean input rate; By, = (Bg, (t),t € R) is a fractional Brownian
motion (FBM) with Hurst parameter Hy, and L, = (L,(t),t € R) is
symmetric a-stable Levy motion. Both processes are self-similar with
indexes Hq, and Hs = 1/« respectively. In what follows we assume that
Hy # Hs, 1/2 < Hy,Hs < 1, 01 = 09 = 0, the processes By, and L,

© Khokhlov Yu.S., 2018
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are independent. We are interested in estimation of so-called overflow
probability, i.e. the probability that stationary workload @) exceeds some
threshold level b, namely e(b) := P[Q > b]. Denote H = min(Hy, Hs).
Our main result is the following estimate: for large b > 0

e(b) > C - b~ (-H)e

This research is supported by Russian Foundation for Basic Research,
project 18-07-00678.
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Statistical procedures for network structures
identification with invariant risk function

P. A. Koldanov!

!National Research University Higher School of Economics,
Nizhny Novgorod, Russia, pkoldanov@hse.ru

Network model of a complex system is a complete weighted graph
where nodes corresponds to the elements of the system and weights of
edges are given by some measure of connection between them. Net-
work models are widely used in the stock market network analysis Man-
tegna [1], Boginski [2], Boginski [3]. Nodes of the network model corre-
spons to the stocks of the stock market and weights of edges are given
by Pearson correlations between fluctuations of stock returns.

Different network structures which contain a key information of net-
work models are analyzed. Minimum spanning tree (MST) Mantegna [1],
planar maximally filtered graph (PMFG) and market graph Boginski [2],
Boginski [3] are most popular network structures in market network anal-
ysis.

Key problem is to identify these network structures by observations
of stocks return fluctuation. Traditional approach to the problem is to

© Koldanov P.A., 2018
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calculate Pearson correlation for any pair of stocks and to apply corre-
sponding algorithms to network structures identification. At the same
time the statistical properties of the algorithms such as unbiasedness,
invariance, optimality are unknown.

In the presentation the concept of random variables network is in-
troduced. Random variables network is a pair (X,~y) , where vector
X = (X1,X5,...,X,) has multivariate distribution and v = (y;; =
~v(X;, X;)) is a measure of similarity between X; and X;. It is easy to
see that traditional approach is based on application of corresponding
algorithms of network structures identification to Pearson correlation
network.

In the presentation the sign random variables network Kalyagin [4] is
introduced which is based on measure P((X; —p;)(X; — ;) > 0) - proba-
bility of sign coincidence of two random variables X; and X; with respect
to their shift parameters. It is shown that if vector X = (X1, Xo, ..., X))
has multivariate elliptically contoured distribution EC'D(u, A, g) with
known p then network structures in Pearson correlation network and
network structures in sign correlation network are coincide. The pro-
cedures for network structures identification in sign correlation network
are constructed. It is proved in Kalyagin [4] that these procedures have
invariant risk function with respect to function g.

In Koldanov [5] the case of unknown p is considered. The random
variable network with measure P((X;(t) — X;)(X;(t) — X;) > 0) is in-
vestigated. It is proved that if matrix of observations

X)) X2) ... X

has matrix elliptically contoured distribution Gupta [6] then

P((Xi = ) (X = pj) > 0) = P((Xi(t) — Xi)(X;(t) — X;) > 0)
Vi=1,...,n; Vi, j=1,....p, i#].

It implies that network structures in network model with measure
P((X;—pi)(X;—pj) > 0) and network structures in network model with
measure P((X;—X;)(X;—X;) > 0) are coincide. Moreover it implies the
property of invariant risk function of procedures for network structures
identification in sign correlation network with respect to unknown pu.

Acknowledgements. This work is partially supported by RHRF
grant Ne 18-07-00524.
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Probabilistic methods for the analysis
of fractional and generalized fractional partial
differential equations

V. N. Kolokoltsov'
'Department of Statistics, University of Warwick, Coventry, UK,
the Higher School of Economics, Moscow, Russia,
v.kolokoltsov@warwick.ac.uk

From the point of view of stochastic analysis the Caputo and
Riemann-Liouville derivatives of order o € (0,2) can be viewed as (reg-
ularized) generators of stable Lévy motions interrupted on crossing a
boundary. This interpretation naturally suggests fully mixed, two-sided
or even multidimensional generalizations of these derivatives, as well as
a probabilistic approach to the analysis of the related equations. These
extensions are introduced and some well-posedness results are obtained
that generalize, simplify and unify lots of known facts. This probabilis-
tic analysis leads one to study a class of Markov processes that can be
constructed from any given Markov process in R? by blocking (or in-
terrupting) the jumps that attempt to cross certain closed set of 'check-
points’. As examples we present wide classes of generalized fractional

(©Kolokoltsov V.N., 2018
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equations giving probabilistic interpretations of their solutions in terms
of the Dynkin type martingales and/or chronological operator-valued
extensions of the Feynman—Kac formulas. Main ideas of the talk are
discussed in more detail in the publications given below.
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Probability models of statistical regularities
in rainfall data

V. Yu. Korolev', A. K. Gorshenin?

!Faculty of Computational Mathematics and Cybernetics, Lomonosov
Moscow State University, Moscow, Russia; Institute of Informatics
Problems, Federal Research Center “Computer Science and Control"
of Russian Academy of Sciences, Moscow, Russia; Hangzhou Dianzi
University, Hangzhou, China, vkorolev@cs.msu.ru
?Institute of Informatics Problems, Federal Research Center “Com-
puter Science and Control" of Russian Academy of Sciences, Moscow,
Russia; Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, Moscow, Russia,
agorshenin@frccsc.ru

Mixed probability models are proposed for statistical regularities in
the behavior of such characteristics of rainfall data as the duration of
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a wet, period, maximum daily precipitation within a wet period and to-
tal precipitation volume per a wet period. The base for the models is
the generalized negative binomial (GNB) distribution. The results of
fitting the GNB distribution to real data are presented and demonstrate
excellent concordance of the GNB model with the empirical distribu-
tion of the duration of wet periods measured in days. Based on this
GNB model, asymptotic approximations are proposed for the distribu-
tions of the maximum daily precipitation volume within a wet period
and of the total precipitation volume for a wet period. The asymptotic
distribution of the maximum daily precipitation volume within a wet
period turns out to be a tempered scale mixture of the gamma distribu-
tion in which the scale factor has the Weibull distribution, whereas the
asymptotic approximation for the total precipitation volume for a wet
period turns out to be the generalized gamma (GG) distribution. Both
approximations appear to be very accurate. These asymptotic approxi-
mations are deduced using limit theorems for statistics constructed from
samples with random sizes having the generalized negative binomial dis-
tribution. Based on these models, two approaches are proposed to the
definition of abnormally extremal precipitation. These approaches im-
prove the existing ones [1], [2], [3]. The first approach to the definition
(and determination) of abnormally extreme precipitation is based on the
distribution of the maximum daily precipitation of the form of a tem-
pered scale mixture of the gamma distribution in which the scale factor
has the Weibull distribution. The analytic and asymptotic properties of
this distribution are discussed. According to the first approach, a daily
precipitation volume is considered to be abnormally extremal, if it ex-
ceeds a certain (pre-defined) quantile of this distribution. The second
approach is based on that the total precipitation volume for a wet period
has the GG distribution. This model is deduced as a version of the law of
large numbers for random sums in which the number of summands has
the GNB distribution. Hence, the hypothesis that the total precipitation
volume during a certain wet period is abnormally large at a given time
horizon can be formulated as the homogeneity hypothesis of a sample
from the GG distribution. Two equivalent tests are proposed for testing
this hypothesis. One of them is based on the beta distribution whereas
the second is based on the Snedecor—Fisher distribution. Both of these
tests deal with the relative contribution of the total precipitation volume
for a wet period to the considered set (sample) of successive wet periods.
Within the second approach it is possible to introduce the notions of rel-
atively abnormal and absolutely abnormal precipitation volumes. The
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results of the application of this test to real data are presented yielding
the conclusion that the intensity of wet periods with abnormally large
precipitation volume increases.
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Bayesian method of modeling the balance and
advantage processes

A. A. Kudryavtsev', S. I. Palionnaya?, A. I. Titova?

!Faculty of Computational Mathematics and Cybernetics,

M. V. Lomonosov Moscow State University, Moscow, Russia,
nubigena@mail.ru

2Faculty of Computational Mathematics and Cybernetics,

M. V. Lomonosov Moscow State University, Moscow, Russia,
sofiko-10@yandex.ru

3Faculty of Computational Mathematics and Cybernetics,

M. V. Lomonosov Moscow State University, Moscow, Russia,
onkelskroot@ gmail.com

The overwhelming majority of modern life aspects, from household
appliances to public administration, have become so complex that the
determinnation of performance criteria by deterministic analysis is vir-
tually impossible. Thus, all sorts of indices and ratings are becoming
more common allowing to make decisions quickly where a study would
take years and require significant financial and material resources. The
creation of ratings and indexes is normally based on the separation of
the model parameters into two classes. The first class includes param-
eters that facilitate the functioning of the target object and positively
affect the process (p-factors); the second class includes parameters that

© Kudryavtsev A.A., Palionnaya S.I., Titova A.L., 2018
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inhibit and negatively affect the functioning (n-factors). Naturally, the
functioning of the system under investigation mostly depends not on the
explicit values of n- and p-factors, but rather on their ratio. At the
same time, a large discrepancy between the values of the factors usually
indicates either excessive costs of “fighting negative influence” or under-
estimated negative impact. Thus, in order to make the system balanced,
it is reasonable to strive to the ratio of the n-factor to the p-factor equal
to unity. However, the statements of the problem exist where the preva-
lence of the p-factor over the n-factor is reasonable to achieve despite the
costs. For example, in case of security or reliability investigation. In this
situations, the ratio of the negative to the positive factor tends to zero,
and the ratio of the p-factor to the sum of the p- and n-factors and its
closeness to unity should be considered instead in order to understand
the closeness to the solution.

Denote by A and p respectively the n- and p-factors of the model.
Consider the balance index p = A/p and the advantage index

I 1

T S

Examples of the balance and advantage indices are found in all kinds of
areas of knowledge from demography to simulation of emergencies.

Over the course of time, m- and p-factors, and hence the bal-
ance/advantage indices, undergo changes. This is caused by the instabil-
ity of the environment in which the functioning takes place — economic
development, the political system, production technologies, population
preferences, etc., — change. For this reason, it makes sense to consider
not only the instantaneous values of the factors and indices, but also
the corresponding functions of time: the n-process A(t), p-process u(t),
balance process

_ M
and the process of advantage
_ k()
A TOESIO)

The impossibility of a thorough study of the “states of nature”, in
which the system under investigation operates, and inevitable errors in
measurements are the prerequisites for considering factors, and hence in-
dices, as random variables. Furthermore, one must take into account that

55



XXXV International Seminar on Stability Problems for Stochastic
Models

global changes in the environment rarely occur, therefore, the laws that
affect the values of the factors can be considered unchangeable within
the framework of a particular model. Hence, the distributions of the
considered random variables should be assumed to be given a priori.

The above reasoning leads to the application of the Bayesian method
to the balance models.

In the report, a number of implementation examples for the balance
and advantage indices from specific areas of knowledge are provided. The
analytical results for one-dimensional distributions of balance processes
for models with a priori gamma-type distributions are presented.

Acknowledgements. This research is partly supported by the Rus-
sian Foundation for Basic Research (project No. 17-07-00577).

Numerical results on finite source Markov retrial
system with collision

A. Kuki', T. Bérczes', A. Toth', J. Sztrik!

! University of Debrecen, Debrecen, Hungary,
kuki.attila|berczes.tamas|toth.adam|sztrik.janos@inf.unideb.hu

A retrial queuing system with a single server is investigated in this
paper. The server is subject to random breakdowns. The results are pro-
vided by the help of recursive numerical calculations (Bérczes and Sztrik
and T6th and Nazarov [1], Kim [2], Wang and Zhao and Zhang [5]). The
number of sources of calls is finite and collision (Nazarov and Kvach and
Yampolsky [3], Téth and Bérczes and Sztrik and Kvach [4]) can take
place. The failure of server block the system’s operation therefore the
arriving customers can not enter the system, meaning that those calls are
lost. All the random variables included in the model construction are as-
sumed to be generally distributed and independent of each other. From
the Kolmogorov system equations a recursive algorithm has been derived
for non-blocking case ([3]). As the novelty of this analysis, this algorithm
is modified to the blocking case, as well. Various figures represent the
impact of blocking phenomenon on the main performance measures like
mean and variance of number of customers in the system, mean and
variance of response time, mean and variance of time a customer spent
in service, mean and variance of sojourn time in the orbit.

© Kuki A., Bérczes T., Téth A., Sztrik J., 2018
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Clustering and assortativity in configuration
graphs

M. M. Lerit

nstitute of Applied Mathematical Research of the Karelian Research
Centre of the Russian Academy of Sciences, Petrozavodsk, Russia,
leri@krc.karelia.ru

Since the end of the XX-th century the study of random graphs with
node degrees being independent identically distributed random variables
following a common power-law distribution has gained steam. The rea-
son was quite obvious: observations of real-world complex communica-
tion networks showed (see e.g. Faloutsos etc. [1], Hofstad [2]) that these

© Leri M.M., 2018
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models could be used for their description. However, with networks’
growth it has become obvious that it is not enough to know the node
degree distribution and its parameters to get a good-fit model of a real
network, but there are some numerical characteristics that have to fit in
also.

In this work we consider configuration graphs introduced by Bol-
lobas [3] with the following power-law node degree distribution (see Re-
ittu and Norros [4])

P{¢=k}=kT"—(k+1)", 7>1, k=12,

where £ is a random variable equal to the degree of an arbitrary node.
Node degrees form incident semiedges numbered in an arbitrary order
and the graph is constructed by an equiprobable joining of all semiedges
one to another to form links. Obviously, such construction supposes the
sum of node degrees to be even, so if otherwise one semiedge is added to
an equiprobably chosen node to form a lacking connection. Configuration
model allows loops and multiple links in its graph.

Recent works (see e.g. Biaconi and Barabasi [5], Pavlov [6]) that the
node degree distribution can not only change with the growth of a net-
work size but even be random, which means that the graph is constructed
in a so called random environment. Thus, in our work we consider two
types of configuration graphs. The first one with the parameter 7 of
the distribution (1) being a fixed value and the second one with the
values of 7 being determined separately for each node from either uni-
form or truncated normal distribution on some predefined interval (a, b),
1 < a < b < oo, so we can say that the graph is formed in random
environment.

Along with the node degree distribution description of real-world
complex networks includes studying various numerical characteristics
that show both local and global network properties. The best known
among them are global and local clustering coefficients and assortativity
coefficient.

Assortativity coefficient A is used for estimating correlation between
the degrees of incident nodes, wherefore it is proposed (see e.g. New-
man [7]) to use Pearson correlation coefficient for this purpose. Obvi-
ously, if nodes with high degrees connect mostly to nodes with also high
degrees, then the assortativity coefficient A will be positive and the net-
work is called assortative, otherwise the coefficient will be negative and
a corresponding network is called disassortative.

58



XXXV International Seminar on Stability Problems for Stochastic
Models

For estimating the degree of graph clusterization we used the fol-
lowing global C¢ and network average Cj, clustering coefficients (see
Newman [7]):

3 x number of graph triangles

C - . 9
¢~ humber of connected triples of nodes

L X
CL = NZCZ"
i=1

where

o number of triangles connected to node i
7'/ =

number of triples centered on node i

where a "triple" means a single node connected by links to two others, C;
is local clustering coefficient (Newman [7]). Since configuration graphs
may have loops and multiple links, in calculating clustering coefficients
loops are not counted and multiple links are considered as one.

The results were obtained by simulation technique. We considered
configuration graphs with the number of nodes 100 < N < 10000 in two
cases of the node degree distribution: with fixed values of 1.01 <7 < 2.5
and random environment, when 7 was either uniformly distributed on a
predefined interval [a, b] or was a random variable following a truncated
normal distribution on the same interval (a,b) with the expectation of
¢ at each interval (a,b) being defined as the middle value (a + b)/2 and
the standard deviation ¢ = (b—a)/6 in accordance with the three-sigma
rule. The considered intervals (a,b) were the following: (1,2), which
corresponds to a well-known property of communication networks (Hof-
stad [2]), (2,3), connected with forest fire modeling (Leri and Pavlov[8])
and (1,3) as a generalization of the first two. Based on the obtained
results we derived regression dependencies of coefficients A, Cg and Cp,
on the graph size N and the parameter of the node degree distribution
7 in the first considered case, when 7 was fixed. The general form of the
obtained equations looked like the following (here and in what follows
CF denotes either of the three considered coefficients):

CF =c¢- N"4th/7,

where the coefficient ¢ was negative in the relation for assortativity co-
efficient A, which means that configuration graphs are to be used for
modeling only disassortative networks, and for clustering coefficients Cq
and Cf, ¢ was positive. The coefficients d and h were always positive.
Determination coefficients for all models were greater than 0.95.
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In the case of random environment we also obtained regression rela-
tions of the coefficients A, C¢ and Cf, on the graph size N. The general
form of these equations was derived to be as follows:

CF=p-N"9

where the coefficient p was negative in the relation for the coefficient A
and positive for Cg and Cp. Coefficient ¢ was positive in all cases and
R? > 0.97 for all models.

We believe that these results will be helpful in constructing models of
specific networks in the form of configuration graphs with the power-law
node degree distribution (1) by choosing the best fitting values of the
parameter 7 or by choosing the distribution of a random 7 fitting the real
values of the assortativity and clustering coefficients of these networks.
Moreover, we compared the values of A, Cg and Cp, calculated for real-
world networks and given by Newman [7] with the same coefficients for
the corresponding configuration graphs of the same size obtained from
our equations. The results showed that for modeling of the Internet
on AS-level configuration graphs with 1.02 < 7 < 1.17 give the best fit,
while for modeling of some social networks the value of 7 must be greater
than 2.

The study was supported by the Russian Foundation for Basic Re-
search, grant 16-01-00005. The research was carried out using the equip-
ment of the Core Facility of the Karelian Research Centre of the Russian
Academy of Sciences.
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On generalization of the Ahmad—Wang inequality
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Let X1, X3, ..., X, be independent random variables on a com-
mon probability space (2, F,P) with EX; = 0, EX? = o7, and
B2 =%"7_, 0% > 0. Denote

uk(z) = EX,?,l(|Xk| <z), M(z)=2z2" EX£1(|X;€| >z), z>0,

Fox) =P(X; +Xo+ ...+ X, <zB,), A,= st€1£|Fn(;L) — o(x)|,

where ® stands for the standard normal distribution function. Let G
denote the set of all nondecreasing functions g : Ry — R such that
x/g(x) is nondecreasing for z > 0. We prove that for every e € (0; +00],

~ > 0 there exist constants C(e,v), C(e, v) depending only on €, v such
that

Ci(e,7) Ca(e,v)
An < —" Ln. ) Sy ) An S S /1> N Ln. ) )
< Bag(B, 105 B2g(B,) e
Vg e g,
where
g Py n n
Lui(g.em = s 22 (13w + S M) ).
0<z<eB, ~ =1 =1
9(eBn) | 9(2) <
L,2(g,e,7) = (eBp)|+ sup =—— A (2).
2987 = "5 ;Mk( ) S kZ:l k(2)

(© Makarenko V.A., Gabdullin R.A., Shevtsova I.G., 2018
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The obtained inequalities improve and generalize those in [1-4] and, ac-
cording to Zolotarev’s [5] classification, can be called natural convergence
rate estimates in the Lindeberg—Feller theorem.

Let X, Xs, ..., X,, have the same distribution function F(x). For
1 = 1, 2 denote asymptotically exact constants, which are lower bounds
for Ci(e,7):

, (F)
Can.i(g,e,7) = suplimsu n"
B (g ’Y) Fp n—>oop LTL’Z‘ F’g’E’A/)

B An(F)
C i\Yy <) =1 Lni(F,g,2,7)
Ap.ilg,€,7) = lmsupsup =" ==

A, (F
=0  n,F:Ly (F,g,e,7)=(
A, (F
Cag.i(9,€,7) = limsup lim sup Sup ol )’
) 1—0 Nn—00 F:Ly ;(F,g,e,7)=L ¢
AL (F
Cup,i(9:€,7) = suplimsup sup ol

)
£>0 mn—oo F:L, ;(F,g,e,v)=¢ ¢

where g € G, e < 1,7 > 0,47 = 1, 2. We provide lower bounds for each
of the above asymptotically exact constants.

Acknowledgements. Research supported by the Russian Foun-
dation for Basic Research (project 16-31-60110-mol _a_dk) and by the
grant of the President of Russia No. MD-2116.2017.1.
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A new class of spatial survival model with closed
skewed-Gaussian random effect

K. Motarjem', M. Mohammadzadeh?

!Tarbiat Modares University, Tehran, Iran,
k.motarjem@modares.ac.ir
2Tarbiat Modares University, Tehran, Iran,
MOHSEN-M@modares.ac.ir

Abstract. Random effects of frailty components are used in survival
models to enter the unknown risk factors. But in many cases, there
may be a spatial correlation between the survival times. In this case,
a Gaussian random field is usually considered for random effects while
entering this component to the model convert survival model to spatial
survival model. But the consideration of a Gaussian random field for
spatial random effects sometimes not correspond to reality. In this paper,
by considering a closed skew Gaussian random field for random effects
we propose a new class of spatial survival models. In a simulation study,
we will show that the deviation from the Gaussian assumption random
effects have an undesirable effect on parameters estimation in the spatial
survival model, while the use of the closed skew Gaussian random effects
provides more accurate parameters estimates. Finally, the introduced
model is applied to explore the pattern of infecting Cercosporiose in
olive trees.

Keyword Frailty, Spatial Survival Data, Closed Skew Gaussian Ran-
dom Field, Cercosporiose.

Introduction. Survival analysis has a long history in medical studies
and reliability in engineering Cox and Oakes [1]. It is usually assumed
in survival models that the failure times of the subjects are independent.
while in many cases this assumption is not realistic in some applications
and the failure times are spatially correlated . Many Scientific researcher
Biggeri et al [2] and Ramsay et al [3] have shown that in the presence
of spatial correlation in survival data and ignoring it in modeling and
analyzing survival data can lead to false and misleading results. Random
effects are usually a latent component of the survival data, that can be
achieved by recognizing the spatial correlation and considering through
a spatial survival model to yield results consistent with reality. The
analysis of survival models with spatial random effects has a history of

(© Motarjem K., Mohammadzadeh M., 2018
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Fig. 1: The locations of trees in the garden and time disease, circle areas are
proportional to observations and pluses represent censored data

less than two decades. Most spatial survival models are introduced by
researchers are suitable for lattice data that the spatial correlation exists
between the areas containing survival data. But in geostatistical cases,
the analysis of survival models are complicated in parameter estimation.
Motarjem et al [4] introduced a spatial survival model for analysing
geostatistical survival data, where a Gaussian random field is used for
considering the spatial random effects. However, due to the existence
of skewness in survival data, the Gaussian assumption of random effects
may not be realistic. In this paper, by considering a closed skew Gaussian
random field for spatial random effect, a new model for skew spatial
random effects is proposed, the effect of this deviation on the estimation
of model parameters is investigated.

Application. In this study, Cercorpiose disease infestation in a gar-
den with an area of 5000 m? in which 173 olive planets exist, is studied
daily for two months. Age (in years), type (two type) and height (in
meter) of each olive tree considered as covariates. In the case of having
tree disease, the disease time noted. By the end of the study, 85 trees
have been infected and the others were right censored. Consequently, we
have 51 percent right censoring. The location of trees showed in Fig. 1
while the infected trees demonstrated by circles and the others by plus
signs (+). The area of each circle relates to infecting time in a way that
smaller circles indicate earlier infection and larger circles depict later
infection.
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Table 1: Parameter estimates of Cox and Frailty models fitted to olivegrown-

ing data

Proportional hazards Frailty
Par. Est. SE Est. SE
b1 -0.381 0.129 -0.600 0.192
Ba -0.662 0.156 -1.026 0.221
B3 0.351 0.119 0.477 0.181
In(L) -396.667 -340.046
AIC 799.334 682.092

Table 2: Parameter estimates of proposed model with different covariance

functions
Exponential Gaussian Spherical
Par. Est. SE Est. SE Est. SE
51 -0.592 0.014 -0.573 0.017 -0.503 0.021
B2 -1.402 0.059 -1.203 0.075 -1.011  0.089

B3 0.624 0.073 0.602 0.082 0.589 0.102
a 0.999 0.083 0.973  0.098 1.121  0.108
o? 0.307  0.039 0.296 0.052 0.213 0.083
) 0.512 0.084 0.419 0.102 0.408 0.106

ln(f/) -293.084 -301.209 -304.284
AIC 598.168 614.418 620.568
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Asymptotic representation for likelihood ratio

statistics in competing risks model under
hybrid censoring

N. S. Nurmukhamedova'!
! National University of Uzbekistan, Uzbekistan,
rasulova_ nargiza@mail.ru

The usefulness of concept of local asymptotic normality (LAN) of a
family
of probability distributions in problems of theory of asymptotic esti-
mation and hypothesis testing has been demonstrated in a number of
papers. LAN is a property of a sequence of statistical models, which
allows this sequence to be asymptotically approximated by a normal lo-
cation model, after a rescaling of the parameter. The notation of LAN
was introduced by Le Cam [1] in the case of independent and identically
distributed sampling from a regular parametric model. Several exten-
sions of property of LAN for dependent and nonidentically distributed
sampling schemes has been established in statistical literature. In the
papers [2-4] the concept of LAN extended in the competing risks model
(CRM) under random censoring of observations from the right, both
sides and by nonobservation intervals. In this paper we discuss property
of LAN in the CRM by progressively hybrid censored data.

In the CRM our interest is focused on random variable (r.v.) X
with values from measurable space (X, B) and pairwise disjoint events

k
(AW, A®)), where for a fixed k, P(|J A®) = 1. In survival anal-
i=1
ysis X means survival time of object (individual, physical system)
exposed to k competing risks and failing in case one of the events
AW i = T k. The pairs (X,A®),i = 1,k, denote the time and

reason the object fails. Let {(Xj,A;1)7...7A§‘k))7 j> 1} be indepen-

dent copies of ensemble (X;AM ..., A®)) during the experiments un-
der homogenous conditions. Let 5;7) =1 (Ag»l)) is a indicator of event

A;i). Every vector ¢; = (Xj,dj(-l), ...,55-1")) induces a statistical model
with sample the space Y = X x {0,1}*) and o - algebra C of sets
of the from B x Dy x ... x Dy, where B € B and D; C {0,1},
i = 1,k. Suppose that distribution of the vector {; on (¥,C) de-

pends on an parameter = (61,...,0,) € ©: Qq(z,y™,...,.y*®) =

(© Nurmukhamedova N.S., 2018
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Py(X < 2,60 = 40 50 = 40 o e R y® € {0,1}. Let
H(z;0) = Po(X < z), HD(2;0) = Pp(X < x,60) = 1), i = 1,k
Obvious that H®M(z;0) + ... + H®(x;0) = H(x;0).Let HY(x;0) are
absolutely continuous, h()(z;0) = %, i = 1,k and h(z;0) =
h(l)(x;ﬁ) + o+ h("’)(x;G). Let X1, < Xo, < ... < X,, are order

statistics of subsample { X1, ..., X,,} and {5(1 0 =T 1,n} indicator

jn o Ygn o
functions in sample ¢(") = (C1y...,Cpn) corresponding to order statistics
{Xjn,j = 1,n}. Denote , where (j,, = ( jn,éj(,lq - 753(:)) Throughout

(Y Yy, Qén)) denote the sequence of statistical experiments, induced
by (ZW, ..., Z(™). Now we consider the experimental situation when the
competing risks data is random hybrid censored from the right. A hy-
brid censoring, which is the mixture of type I and II censoring, can be
used to save resources. If the experiment stops either at a fixed time
T € R, the experiment is called type I (or (n,T)) censoring model or
is continues until 7(0 < r < n) failures occur, the experiment is called
type II (or (n,r)) censoring model. If the experiment is continues until
either r failures occur or test duration 7T is reached, whichever comes
first, we call the experiment a hybrid (or (n,r,T)) censoring model. In
considered competing risks situation the hybrid censored CRM we de-
note as (n,7,T)*. In (n,r, T)*-model competing risks data is censored
from the right by r.v. Ty, = min {7, X,.,}. In (n,r, T)*-model a number
7 of observed data is r.v.:

Sup{m : Xnm, S T; m S T}7 lf Xln S T7
T =
0, otherwise.

Thus the observed data (Z (7), ’7') have a joint density function

oo (20) = 2 T { 0o 0 o

=11=1

XI (19 < oo < Ty, T 7T),

where t,,, = min {xm, T}.

Let
pn(Z(T); gn)
pn(Z(T)§ 9)

is a likelihood ratio statistics, where 6, = 6 + un~""? € © and 6, u
held fixed. Under certain regularity conditions on underlying distribu-
tion family and on stopping time 7 the LAN property of experiment is

19 () =
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established:

) = exp {u (10) 2 A = 1(0) + R ).

where R, (u) %0, £(AT) /Qg) — L(€), n — 00, €2 N(0,1) and I(6) is
Fisher information.
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Some probabilistic features
of the iterated Brownian motion

E. Orsingher!

!Department of Statistical Sciences, Sapienza University of Rome,
Italy, enzo.orsingher@uniromal.it

We give a review of the basic facts about the iterated Brownian
motion #11(t) = B{" (|[B4*(t)|) where B}, j = 1,2 are two independent
Brownian motions with drift ;. We study the last zero crossing of £1/(t)
and for this purpose we derive the last zero-crossing distribution of the
drifted Brownian motion.

We derive also the joint distribution of the last zero crossing before
t and of the first passage time through the zero level of a Brownian
motion with drift x4 after ¢. All these results permit us to derive explicit

(© Orsingher E., 2018
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formulas for /Ty = sup{s < maxo<.<;|Ba(z)| : Bf'(s) = 0}. Also the
iterated zero-crossing #Tg n27, , is analyzed and extended to the case
where the level of nesting is arbitrary.

The iterated Brownian motion has been examined from many view
points including its connection with fractional equations and some prob-
abilistic properties as the iterated logarithm law.
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New scheme for calculation of senior moment
functions for the state vector of linear stochastic

delay differential system excited by additive
and multiplicative white noises

1. E. Poloskov?

!Perm State University, Perm, Russia, Igor.Poloskov@gmail.com

Current theoretical studies aimed at studying effects of time-lags on
the state and behavior of various systems, began in the middle of the
twentieth century [1, 2]. But they began to develop especially inten-
sively only recently that is related to practical needs. Among the first
applications of such studies were methods of solving problems of con-
trol, and then tasks of biology, mechanics, physics, chemistry, medicine,
economics, atomic energy, information theory etc.

Mathematical models for describing phenomena in these areas are
constructed in the form of functional-differential equations (FDEs) (see
[3, 4] et al.) and various special forms of FDEs such as retarded ordinary
and partial differential equations [5—7] including delay and neutral differ-
ential equations (DDEs, NDEs) as well as integro-differential equations
(IDEs) [8-11].

At present, a considerable interest is being paid to stochastic FDEs
(SFDEs) of different types [12-15]. As it happened earlier for determin-
istic systems, the development of research methods for such equations
became important for theory and practice. Analysis of SFDEs causes sig-
nificant, difficulties, since these SFDEs that arise in many applications,

(© Poloskov L.E., 2018
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can not be solved exactly. Therefore, the actual task is the development
of effective both direct, i.e., obtaining realizations of strong solutions,
and indirect, i.e., computation of statistical characteristics, approximate
analytical and numerical algorithms for analyzing systems of SFDEs.

Now there is a rather wide class of methods for solving determin-
istic FDEs [16, 17]. Approximate algorithms of direct numerical inte-
gration of SFDEs. of various types (for example [18-20]) are based on
these schemes and special compound methods for numerical solution of
stochastic ordinary differential equations (SODEs) [21-23].

But there are some forms of SODEs that don’t require a very compli-
cated scheme to be examined. One of such the forms is a system of linear
SODEs excited by additive and multiplicative white noises. In this case
deterministic ODEs for the first and senior (central) moment functions
can be obtained exactly in the closed form, i.e., an ODE for a moment
function of a current order does not contain moment functions of higher
orders. If we now turn to linear stochastic ordinary DDEs (SODDEs)
with the same input fluctuations, then we formally will be in a similar
situation with respect to a closure of the equations for the moment func-
tions as above. The difference is in the fact that these equations will be
ODDESs. To obtain ODEs for senior moment functions without delays,
we apply a modification of our scheme [24-26] combining the classical
method of steps and extension of the system state space (MSESP).
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Integral representation of the density of the
fractional-stable law

V. V. Saenko'

!Technological Research Institute S.P. Kapitsa, Ulyanovsk
State University, Ulyanovsk, Russia, saenkovv@gmail.com

The characteristic function of the fractional stable law has the form

q(t, o, B,0) = Eg(¢(t, a,0)), (1)
where FEg(z) is the Mittag—Leffler function

oo n

z
Es(z) = _ >0, zeC,
5(2) ;F(“rﬁn) B
P(t,a,8) = —[t|* exp{—i(mab/2)signt}, and the parameters are varying

within the limits
0<a<2 0<p<1, |0 <min(1,2/a-1).

The inverse Fourier transformation of the characteristic function (1)
was carried out for obtaining of the integral representation of the density
of the fractional stable law

1 r —itx ~
.0, 6,0) = 5= / =i G(t, 0, B, 0) dt.

As a result for the density of the fractional stable law the following
theorem is valid

Theorem 1. For any allowed value of the parameters (a, 8,0), such
as 0 < a/B < 2, |0] < min(1,28/a — 1), the densily of the fractional
stable law q(z, v, B,0) has the form

sin(m3) 73/‘1/"9(33 y~ Y a/B,0)

q(z, o, 5,0) = 7B Y2+ 2y cos(mfB) + 1

dy, (2)

B#1 xz#0,
q(x7a71’9):g(x’a’9)’ ﬁ:17
(© Saenko V.V., 2018
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where g(x,v,0) is the density of the strictly stable law (see Zolotarev [1]),

/2
v - * * 1
g(fL‘,V, 9) = m / eXI:){_|x|L171 UW)»V,@ )} U(%V,@ )|‘,1"|u71 dl/%
—m0* /2
v#1,
_ cos(mf/2) _
g(z,1,0) = T Srsm(ad/D 1)’ g(x,1,41) = §(z £ 1).

Here 0% = fsignz,

v

sin (v (¢ + %0))) Y cos (Y —1)+ Zvo) .

cos

cos

U(¢,u,9)z<

Fig. 1: The densities of the fractional stable laws for the values of the param-
eters a = 0.6, 8 = 0.8, 6 = 1 (dotted curve), § = 0.5 (dashed line),
6 = 0 (solid curve)

The results of calculation of the densities are shown on the Fig. 1.
The curves are densities obtained by Eq. (2) and the dots are results
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obtained by Monte Carlo method. For calculation of the density by
Monte Carlo method the following formula is used

Y(a,0)
(S(B,1))8/”

where random variables Y («, 0) and S(8, 1) are distributed according to
laws g(z, a, 0) and ¢(y, 8,1) respectively.

We can obtain expression for the cumulative distribution function
Q(z, a, 8,0) using the Theorem 1. As a result the cumulative distribu-
tion function has the form

X(O[,ﬁ,g) =

sin(r ) 7 Glay™/",0/8.6)
] y? + 2y cos(nf) + 1

Qz,0,8,0) = z >0,

0

0<a/f <2, |0 <min(1,28/a —1) and G(x,v,0) is cumulative distri-
bution function of the strictly stable law (Zolotarev [1])

*

Gla,,0) = 1— =2 (1 4 sign(1 — 1))

. /2
+w / exp{_|x|ﬁU(d)vV’9*)}dw’ v#l
—m0* /2
1 1 x — sin(7w6/2
G(e.1,0) = 5 + - avctan (T ZHTE),

The case x < 0 can be obtained from the relation

Q(—z,a,38,0) =1 - Q(z,c, B, —0).
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Thresholding rules in the models
with non-Gaussian noise

0. V. Shestakov'
!Faculty of Computational Mathematics and Cybernetics, M. V. Lo-

monosov Moscow State University; Institute of Informatics Problems,
Federal Research Center “Computer Science and Control” of the Rus-
sian Academy of Sciences, Moscow, Russia, oshestakov@cs.msu.su

Many modern methods of analyzing and processing signals and im-
ages are based on the possibility to economically represent the function
of a useful signal in a certain basis. For a fairly wide class of functions,
this possibility is achieved with the help of wavelet bases, which ensure
adaptation to functions that have different degrees of regularity in dif-
ferent regions. This makes it possible to efficiently separate the noise
from the useful signal and to remove it using simple thresholding proce-
dures, that is, zeroing out a part of the wavelet coeflicients, which are
assumed to contain mostly noise. The classical model of observations
assumes the presence of white Gaussian noise. In this case, the proper-
ties of the estimates obtained by threshold processing are well studied,
and the order of the mean-square risk for various classes of functions is
calculated [1]. Some results have also been obtained that describe the
asymptotic behavior of the mean-square risk estimate, constructed from
noisy observations [2].

This report considers a wider class of possible noise distributions, in
particular, distributions having heavier tails than Gaussian distribution.
For this class, the values of the universal threshold in the methods of
hard and soft thresholding are calculated, its asymptotic properties are
studied and it is shown that the order of the mean-square risk is close
to the minimum up to the logarithm of the number of observations in
a power depending on the distribution parameters [3]. Also within the
framework of the model under consideration, the strong consistency and
asymptotic normality of the mean-square risk estimate for the universal
threshold processing are proved under the assumption that the signal
function belongs to the Lipschitz class.

Acknowledgements. This research is partly supported by the Rus-
sian Foundation for Basic Research (project No. 16-07-00736).
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Robust minimax estimation of location and least
favorable distributions under asymmetry

G. L. Shevlyakov'
!Peter the Great St. Petersburg Polytechnic University, St. Petersburg,
Russia, gshevlyakov@yahoo.com, Georgy.Shevlyakov@phmf.spbstu.ru

This talk is partially a review of basic former results on the applica-
tion of Huber’s minimax approach to robust estimation of location with
the corresponding least favorable (informative) distributions both in the
univariate and multivariate cases [1-3], and partially it is a presentation
of several recent results and novel problem settings on these issues with
a certain accent on the asymmetry of distribution models.
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Integral transforms of characteristic functions and
their properties
I. G. Shevtsova'
Lomonosov Moscow State University and FRSC IC RAS,
Moscow, Russia, ishevtsova@cs.msu.ru

We propose a natural generalization of the zero bias transformation,
the term introduced by [2], of a probability distribution with non-zero
mean in terms of characteristic functions coming back to ideas of Lukacs
in the second edition of his celebrated monograph [4]. We discuss this
generalization with the other ones called 'non-zero biased’ and ’gener-
alized zero biased’ [1]. We also introduce other integral transforma-
tions of probability distributions, in particular, generalizing the station-
ary renewal distribution (equilibrium, or integrated tail distribution) and

© Shevlyakov G.L., 2018
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symmetric equilibrium distribution and study their properties including
construction of optimal estimates for the minimal L;-bounds between
the original distribution and its transformation. As corollary and using
results of [5] we prove new and sharp moment-type estimates for char-
acteristic functions and their derivatives improving, in particular, some
results of [6] and [7].

Acknowledgements. This research was supported by the Ministry
for Education and Science of Russia (grant MD-2116.2017.1) and by
the Russian Foundation for Basic Research (project No. 16-31-60110-
mol a_dk).
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Non-arcsine law for random walk conditioned to
reach a high level

A. V. Shklyaev!

'Moscow State University, Moscow, Russia, ashklyaev@mech.math.msu.su

Let X; beii.d. random variables with EX; = 0, DX; < co. Consider
the random walk S, = X7 + ... + X,,. Let M,, = max(S;,7 < n) be its

(© Shklyaev A.V., 2018
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maximum, let 7oy = min{i : S; = M, } be the first moment the random
walks reaches its maximum.
Well-known arcsine law for 7, states that

2
P(ng) — —arcsinyz, z € [0,1], n — oo,
n T

or in local form that )
P(ry=m) ~ ——, n — 0,

w2 (- %)
uniformly by m/n € [¢,1 — €] for any € > 0.

Let introduce several classes of random variables.

A random variable X is called arithmetic if P(X € aZ) = 1 for some
a > 0. The maximal possible « is called the arithmetic step of X.

A random variable X is called lattice if P(X € 8+ oZ) = 1 for some
a > 0, 8. The maximal possible « is called the lattice step of X.

A random variable X is called strongly arithmetic if X is arithmetic and
its arithmetic step is equal to its lattice step.

For example, if P(X =1) = P(X = —1) = 1/2, then X is arithmetic,
its arithmetic step is equal to 1, its lattice step is equal to 2, therefore
it’s not a strongly arithmetic random variable.

In the sequel we consider strongly arithmetic or non-lattice random
variables X. Without loss of generality, further on below we suppose
that the arithmetic step of X is equal to 1.

Consider the following generalization of the previous problem: to find
the asymptotics of probabilities P(7y; = m| M, = k), P(7m > x| M,, =
k) as m,k,n € N, n, k, m, x — oo in strongly arithmetic case and

P(TM - m| Mn S [y;y + An)); P(TM Z -73| Mn S [y;y + An))

asn,m € Z,y € Rt, n,m,y,r — oo in non-lattice case, where A, is
some sequence, tending to 0 as n — oo.

In non-lattice case we use integro-local form of limit theorems, intro-
duced by Stone in [1].

We consider three cases: standard deviations (k,y € [ay/n, by/n] for
some 0 < a < b), large deviations (k,y € [an,bn] for some 0 < a < b)
and moderate deviations (k,y € [an, bn], an/n'/?>T0 = 00, b, /0% =0
for some 6 > 0). For simplicity, we state Theorems 1-5 only for strongly
arithmetic case, in non-lattice case the results are similar.

1) Standard deviations.
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Theorem 1. Let X; be strongly arithmetic random variables with
EX;, =0, DX; < co. Then

1 ko1
P 1 = Mn: ~ - S ) )
(tm =1 k) 91 (0\/5 n) n — 00
uniformly by k,1 € Z, l/n € [a,b], k € [e\/n,d/n] for any 0 < a < b < 1,
0 < ¢ < d, where

gi(z,y) = M) :

x
———————exp | —
Py ( 2y
Theorem 2. Let X; be strongly arithmetic random variables with
EX;, =0, DX; < co. Then

P(tvu <an|M, =k,) —>/‘ g1 (s,t)dt, z €0,1], n — oo,
0

uniformly by k, € Z, k,/(oy/n) — s > 0.

Theorem 1 is proved by the use of Sparre-Andersen identity and
results of Caravenna (see [2]). Theorem 2 is a corollary of Theorem 1.

2) Large devations.

Let X beii.d. r.v. with EX; = 0 and suppose that R(h) = Ee"¥X <
oo for h € [0, h1). A random variable X (") is called conjugate to X with
parameter h if

P(XM <z) = R(h)*l/ MP(X € dt).
Denote by S,(Lh) the random walk with i.i.d. steps Xi(h).
It’s easy to see that m(h) = EX (") exists for any h € [0, hT). More-
over, m(h) is strictly increasing on [0,h"). Let m™ = limj_,;+ m(h).
Theorem 3. Let X; be strongly arithmetic random variables with
EX; = 0, satifying Ee"*1 < 0o, h € [0,h). Then

k
Pty =n—1UM,=k)~ go (E’l)’ n — oo,
uniformly by I € Z, |l < a, k/n € [¢,d] for any a > 0,0 < c < d < mT,

where
P (Si(hm) >0,i< l) R(hy)™!

g?(xvl) = .
>, P (s}h“ >0,i < j) R(hy)~9
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Theorem 3 is proved by the use of local version of large deviation
theorem for M,,, similar to results of Shklyaev (see [3]) and Kozlov (see
).

3) Moderate deviations.

Theorem 4. Let X; be strongly arithmetic random variables with
EX; = 0, satifying Ee"** < oo for some h > 0. Then

2 2
Pty =n—-1UM,=k)~ i (lk ),n—>oo,

g\ —5—=
o2n? n2o02

uniformly by n'/?t% < k < n'=% 1k?/n? € [§, M] for any §, M > 0,
where )
e—m/Q
2rx
is a probability density function of x? distribution.
Theorem 5. Suppose X; satisfy the assumptions of Theorem 4.
Then for any a € (0.5,1)

n— Ty
P( JUSx

z/s
350 M, = k‘n> — / g3(t)dt, n — oo,
0

uniformly by ky/(on®) — s > 0.

Theorem 4 is based on local large deviation theorem for random
walk (see [5], Chapter 9) and Sparre-Andersen identity. Theorem 5 is a
corrolary of Theorem 4.

Acknowledgements. The author is grateful to professor Valeriy
Ivanovich Afanasyev and student Kirill Golenkov for useful discussions.
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Size distributions of regolith granules at meteorite
impact on the Moon and in laboratory experiments
with microwave discharge

N. N. Skvortsova', S. A. Maiorov!', D. V. Malakhov',
V. D. Stepakhin', E. A. Obraztsova?, O. N. Shishilov?

!Prokhorov General Physics Institute, Russian Academy
of Sciences, Moscow, Russia, mukudori@mail.ru
2M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bio-
organic Chemistry, Russian Academy of Sciences, Moscow,

Russia, brenka@mail.ru
3Institute of Fine Chemical Technologies, Russian Techno-
logical University, Moscow, Russia, oshishilov@gmail.com

One of the many unusual phenomena experimentally discovered dur-
ing landings of spacecraft on the Moon is the existence of dusty plasma
clouds, which fill a layer with a thickness of several tens of kilometers
above Moon surface. These clouds consist of charged dust grains of re-
golith, which covers the entire lunar surface with a layer whose thickness
reaches several meters in lunar seas [1, 2]. Samples of lunar regolith were
delivered to Earth by spacecraft, and its structure was well studied. Re-
golith is a mixture of powders of different oxides (aluminum oxide, silicon
oxide, iron oxide, etc) with a mean grain radius of 70 — 100 um, and a
large number of particles with the radius of the order of one millimeter.
The regolith particle radius distribution is a power-series [3]. The dusty
plasma cloud density above the lunar surface and its altitude distribution
were not specifically studied during the XX century Moon exploration
programmes. However, observations showed that under lunar conditions,
charged particles of regolith have increased adhesive properties that limit
the use of most spacecraft systems on lunar surface [4]. This is why pro-
duction of charged dust grain flows in laboratory conditions is intensively
studied in order to test the components of future lunar technology [5].

In these experiments, the parameters of grain distributions over al-
titude, size and velocity can only be obtained from different (plasma)
models. However, the modern models, which take into account differ-
ent physical processes, such as, e.g., the influence of the solar wind,

© Skvortsova N.N., Maiorov S.A., Malakhov D.V., Stepakhin V.D.,
Obraztsova E.A., Shishilov O.N., 2018
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the photoionization, the shock waves, can only describe the ascension of
micron-sized particles to altitudes of about one meter [6].

It is known that the Moon is constantly bombarded by meteorites.
The impact of even a small-size meteorite produces enough energy to
melt, vaporize and destroy the regolith and release metal and oxygen
oxides [7].

Earlier, development of chain plasmachemical reactions producing a
dusty plasma cloud above the surface of metal and dielectric powder
mixtures irradiated by powerful gyrotron radiation was experimentally
observed in the Plasma Physics Department of the Prokhorov General
Physics Institute of the Russian Academy of Sciences [8]. The absorbed
microwave power necessary to ignite these chemical processes was found
to be comparable with the impact of a meteorite with the size of about
ten microns. This allowed us to conduct a model laboratory experiment
with the goal to create ensembles of dusty structures during the devel-
opment of chain exothermic plasmachemical reactions initiated by gy-
rotron in metal-dielectric powder mixtures whose composition imitated
lunar regolith.

In these experiments, we used a mixture of oxide powders with a
percentage composition the same as in regolith, and with a uniform par-
ticle size distribution. Crossing the energy threshold of chain reactions
(gyrotron pulse energy of 1 — 3 kJ at pulse duration of 1.5 — 4 ms)
initiates an explosive process caused by Coulomb repulsion of charged
particles from regolith surface into the plasmachemical reactor volume.
After the powder mixture explosion, self-propagating chain reactions of
high-temperature plasmachemical synthesis were observed, which con-
tinue for tens of seconds. During this period, the suspended dust grains
levitate several tens of centimeters above the powder mixture surface,
and produce a levitating cloud, which occupies not only the entire reactor
volume, but also raises to a height of up to 1 m above the rector (and
this, in the terrestrial gravitation field). The energy produced during
this process exceeds the initiation energy several hundredfold. Melted
regolith spheroids with diameters of 1—1000 pum are deposited on the side
surface of the reactor above the powder mixture, whose size distribution
is also uniform.

In this work, we note the possible analogy between this process and
the raise of dusty plasma clouds above regolith surface on the Moon,
which, similarly, could be caused by not only physical processes, but
also chemical chain processes caused by meteorite impact.
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Simulation of finite-source retrial queueing
systems with collisions and blocking
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This paper investigates a retrial queuing system with a single server,
which is liable to random breakdowns (Bérczes and Sztrik and Téth and
Nazarov [1], Kim [2], Wang and Zhao and Zhang [5]) by the help of a
simulation program. The number of sources of calls is finite and collision
(Nazarov and Kvach and Yampolsky [3], Téth and Bérczes and Sztrik
and Kvach [4]) can take place. The failure of server block the system’s
operation therefore the arriving customers can not enter the system,
meaning that those calls are lost. All the random variables included in
the model construction are assumed to be generally distributed and in-
dependent of each other. The novelty of this analysis is the inspection
of blocking effect on the performance measures using different distri-
butions. Various figures represent the impact of different distributions
on the main performance measures like mean and variance of number
of customers in the system, mean and variance of response time, mean
and variance of time a customer spent in service, mean and variance of
sojourn time in the orbit.
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Permutation tests for homogeneity based
on some characterizations

N. G. Ushakov', V. G. Ushakov?

INTNU, Trondheim, Norway, nikolai.ushakov@ntnu.no
2Moscow State University, Moscow, Russia, vgushakov@mail.ru

One of the important problems in statistics is the problem of testing
the equality of the distributions of several populations. A typical exam-
ple, often referred to, is the comparison of several drugs with a placebo,
where the hypothesis of no drug effect is tested versus the alternative
of at least one effect. There is a number of tests for this problem es-
pecially for the two-sample problem. Such procedures are usually not
distribution free, the distribution of the test statistic depends on the dis-
tributions of the samples, therefore critical points for the distribution of
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the test statistic under the null hypothesis of homogeneity are obtained
using a bootstrap-type resampling scheme, see, for example, Allen [1].

A class of tests for testing the homogeneity of two populations is
proposed by Meintanis [2]. The tests are based on the empirical charac-
teristic function, and the test procedure is based on resampling from the
permutation distribution of the test statistic. The test statistic is the
weighted L? distance between empirical characteristic functions. Weight
functions of two types are used — a normal density and a Laplace density.

In this work, we propose tests of homogeneity of two or more distribu-
tions. The tests are based on characterizations of homogeneity obtained
by Ushakov [3] and Ushakov and Ushakov [4]. Since the distribution of
the test statistics depends on the distributions of populations, we also
use the bootstrap-type resampling technique, mentioned above.
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On stability of characterization
of distribution types
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The following problem often arises in applications. Suppose that
there are a number of small independent samples such that in each small
sample observations are independent and identically distributed while
from sample to sample they have different values of location parameter.
First this problem was posed by A.N.Kolmogorov, see Zinger [1]. In
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this situation it is necessary to use statistics which do not depent on the
location parameter. Reconstruction of the type of initial distribution
from distribution of such a statistic is an actual problem, in particular
for goodness of fit testing.

The stability of the reconstruction has been studied by a number of
authors, see, for example, Prokhorov [2], Zinger and Kagan [3], Kagan
and Klebanov [4]. Ushakova [5] proved that the upper bound of stability
has the order ¢'/3L(e), where L(e) is a slowly varying function. Here
this estimate is improved.

In what follows we suppose (without loss of generality) that the small
subsamples have size 3, i.e. the minimal necessary size. The main result
is as follows. Let X7, X5, X3 be independent random variables with
common distribution function F'(z — 6) and unit variance, ®(z) be the
standard normal distribution function. Let a = (a1, a2, as) be a vector
satisfying the following conditions:

a1 +as+az=0, a+a3+ai=1
Denote
X@ = a; X; + a2 Xo + az X3,
and let F(9)(z) be the distribution function of X (@),
Theorem. If

sup/ (1+ |z))d|F @ — | <e< 1,
then
sup |F(z — 0) — ®(z)| < €/2L(e)

for some 0, where L(¢) is a slowly varying function.

We also consider the problem of testing for homogeneity of two sam-
ples in the considered case when the samples consist of small subsamples.
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Development of a semiautomatic system for

processing the magnetic probe diagnostic data
on L-2M stellarator
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2Prokhorov General Physics Institute of the Russian Academy
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*National Research Nuclear University (MEPI), Moscow,
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4Pirogov Russian National Research Medical University,
Moscow, Russia

At the present time, experiments on plasma heating and confinement
are carried out on the L-2M stellarator (Prokhorov General Physics In-
stitute of the Russian Academy of Sciences) using MIG-3 gyrotron com-
plex which allows us to achieve record specific energy deposition into the
plasma (up to 3 MW /m3) [1]. The development of this heating complex
as well as studies of the new pulsed-periodic regime of plasma heating,
during which the 10-ms-long gyrotron pulse is separated into train of
three 3-ms-long pulses [2] increases the necessity of studying the stabil-
ity of the signals of both macro (temperature, density, energy deposition)
and micro (signal fluctuations, turbulence diagnostics) parameters dur-
ing the analysis of experimental data [3, 4]. Among the latter is the
magnetic probe diagnostic of the L-2M stellarator, which consists of a
series of up to 9 detectors placed in different diagnostic cross-sections
and allows us to study the spectral characteristics of different spatial
modes of the low-frequency plasma turbulence.

© Voronova E.V., Skvortsova N.N., Kholnov Yu.V., Malakhov D.V.,
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In this work, analysis of the signals of magnetic probe diagnostics of
the L-2M stellarator in the above regimes is presented, using the semi
automatic processing system that is being developed [5].
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Multivariate regular variation in probability
theory

A. L. Yakymiv!

!Steklov Mathematical Institute of Russian Academy
of Sciences, Moscow, Russia, arsen@mi.ras.ru

It is well-known that the regularly varying functions of one variable
were introduced by J. Karamata (1930). Namely, positive measurable
function f(t), defined for ¢ > C' > 0 is said to be regularly varying at
infinity iff, for any A > 0, there exists a positive and finite

im LY Z o0 (= e = 29).

o 7D

A number g is called as the index of regular variation of the function
f@®).
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If in the one-dimensional case, there is in fact one definition of regu-
larly varying functions, then in the multidimensional case the situation
is significantly different. Namely, there are a number of classes of func-
tions that generalize this concept. At the same time, each class of such
functions has (generally speaking), its own applications.

Multidimensional extensions of regularly varying functions are de-
fined by different authors, for instance: BajSanski and Karamata
(1969), Yu.Drozhzhinov and B.Zav’yalov (1984, 1986, 1994), L.de
Haan (1985), S.M.Kozlov (1983), A.Nagaev and A.Zaigraev (2003),
M. Meershaert (1986, 2001), I.S.Molchanov (1993), E.Omey (1982,
1989), T.Ostrogorsky (1995, 1997, 1998), A.Stam (1977), S.Resnick
(1986, 2007, 2015), E. Rvageva (1962), A. Yakymiv (1981, 2003, 2018).

In addition, a number of articles by different authors containe con-
crete results in such areas of probability theory and it’s applications as
random point processes, extreme values, the summation theory of ran-
dom vectors, generalized renewal theory, branching processes, infinitely
divisible random vectors, finance mathematics, risk theory, random per-
mutations and random mappings, random vectors with multiple power
series distribution, growth of preferential attachment networks and oth-
ers. Some references one can see in the author’s book (2005).

It is less known that J. Karamata, together with B. Bajsanski (1969)
gave a deep generalization of regularly varying functions not only to the
multidimensional case, but also for topological groups. Namely, con-
tinuous functions f: G — Ry are considered, where G is an arbitrary
topological group where a filter Ll of open convex sets in G with count-
able base is given. The filter 4 is thought of as G-invariant, that is,
Uh € { and hU € U for any set U € 4 and any element h € U. A
function f is said to be regularly varying with respect to filter 4 if the

limit,

lim Jgh) = ¢(h)

9= f(g)
exists for any h € G, where g — co means convergence with respect to
the filter. In this paper, a theorem about uniform convergence is also
proved.

In Ostrogorsky (1995, 1997, 1998), the research started in Bajsanski,
Karamata (1969) is continued. As the group G, various cones in R" are
considrered, such as the hyper-octant, the future light cone, arbitrary
homogeneous cones.

In Drozhzhinov and Zav’yalov (1984) and further papers the regu-
larly varying generalized functions with support on homogeneous cones
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were introduced and studied, see also Vladimirov, Drozhzhinov and
Zav’yalov’s book (1986).

In the Omey’s doctor’s dissertation (1982) and his book (1989), mea-
surable functions : Ri — R, are studied such that the limit

L H 0z s(y)
S f (), 5(0)

exists for some auxiliary functions r,s: Ry — R4, r(t) — o0, s(t) = o0
as t — oo, some positive function A(z,y) and for all z, y > 0. Using this
definition, E. Omey obtained some results in generalized renewal theory,
extreme value theory and for domains of attraction of partial sums of
i.i.d. random vectors.

In Meershaert (1986, 1988), functions f(¢) of one variable ¢ are con-
sidered whose values are non-singular linear operators from R¥, and the
idea of regular variation is extended to this case. In Meershaert and
Scheffler (2001), the limit distributions for sums of i.i.d. random vectors
with operator normalization were obtained with a number of applica-
tions, with helping of such notion.

In I.S. Molchanov (1993), regularly varying functions f(z) defined in
some m-dimensional cone are introduced whose values are closed (com-
pact) sets in RY. Further, the limit behaviour of such random sets were
investigated.

According to S. Resnick (1986), a random vector X taking values
in R™ is said to be regularly varying at infinity with index o > 0 and
spectral (probability) distribution P, on the unit sphere S*~! C R" if
there exist positive ¢ and oy, k € N, such that, as k£ — oo,

= )‘(xvy)

kP{o;'X € A(r,B)} — cr~*Ps(B)

for all sets B C S™~! of continuity of the limiting measure P, and r > 0,
where
A(r,B) ={z: x € R", |z| > r, z/|z|] € B}.
In Basrak, Davis, Mikosh (2002), it is shown that if a random vector
X regularly varies at infinity with index @ > 0, then for any x € R"™ and
some slowly varying at infinity function L(t) there exists the limit

. P{(z, X) >t}
A ——rm o~ w@)

and there exists zg # 0 such that w(xg) > 0. It is also shown that for
non-integer a > 0 the corresponding converse assertion is true, while

90



XXXV International Seminar on Stability Problems for Stochastic
Models

the limiting measure P is uniquely determined by the function w(z). A
counterexample is given for a = 2.

In A.Nagaev and A.Zaigraev (2003), a function f(z), z € R™, is said
to be (8, \) regularly varying if, as |z| — oo,

f(z)
rs(lxl)

— Alex)| = o(1),

sup
ex EE

where e, = z/|z|, rg(t) regularly varies as ¢ — oo with
Eyx={acS" " Aa) > 0}.

In Resnick (2007, 2008), some classes of measures and functions are
considered. In particular, they allow to obtain the next asymptotics:

EP{(X/alt) > 2,Y/b(t) > )} — pola,y) =

= p([x, 00] X [y,o0]), Vax,y >0,

where r.v. X and Y have applications and concrete interpretation in
preferential attachment networks, see Resnick et al (2015, 2016). The
authors of last two papers say that that the regular variation is nonstan-
dard, if a(t) and b(¢) have different order at infinity.

Let U = {Uyg, k € I C[0,00)} stand for an arbitrary family of linear
operators in R™ which leave invariant the cone I' C R"™:

U'=T Vkel.

We assume that oo is a limit point of the set I. According to Yakymiv
(2003), a function f(z), which is defined, positive, and measurable in T,
is regularly varying in T along a family U = {Uy, k € I} iff for some
vectorec'andallz el asz, — 2, k - o0, k € 1,

f(Ugzy)
f(Uxe)

In the already mentioned paper, this definition was used at the study
of asymptotics of infinitely divisible distributions with a support in ho-
mogeneous cones. Also the asymptotic properties of some classes of
random permutations and random mappings were investigated (2009,
2010, 2014). Recently (2018), we obtained the limit theorems (integral
and local) for multiple power series distributions. (In the last two appli-
cations, this definition is used in the case when I' = R’} and operators
Uy are diagonal).

— ¢(x) >0, () < 00.
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In this abstract, we mention only different multidimensional gener-
alizations of the regularly varying functions known to the author and
some their applications in probability theory. But we suppose to give
much more information in this direction at the presentation.

Magnetoencephalography inverse ill-posed
problem

T. V. Zakharova'?

!'Moscow State University, Moscow, Russia, tvzaharova@mail.ru
2Federal Research Center “Computer Science and Control" of the Russian
Academy of Sciences, Moscow, Russia, tvzaharova@mail.ru

This paper continues a series of studies dealing with noninvasive pre-
operative methods for localizing eloquent areas of the human brain.
Magnetoencephalography (MEG) is a noninvasive method for study-
ing brain activity. It has high temporal and spatial resolutions, and
only weakly depends on the inhomogeneities of the head conductivity,
which makes it a valuable tool for both neuroscience and clinical appli-
cations [1].

The inverse problem of magnetoencephalography is ill-posed and dif-
ficult for both analytical and numerical solutions. Additional complica-
tions arise from the volume (passive) currents and the associated mag-
netic fields, which strongly depend on the brain geometry.

An analytical formula is derived for the solution of the forward prob-
lem that computes the magnetic field on the surface of the head from the
known location and orientation of a current dipole in the low-frequency
approximation in the spherical model [2].

In this paper we find approximate analytical solutions for the forward
and the inverse problems in the spheroid geometry. We compare the
obtained results with the exact solution of the forward problem and
deduce that for a wide range of parameters our approximation is valid.

In addition, the paper considers the question of the stability of solu-
tions of the inverse problem of MEG to the effect of noise. The solution
is unstable to the effect of noise on its angular component, but the de-
viation from the true solution is much less than the noise variance.

Acknowledgements. The work was supported by the Russian
Foundation for Basic Research (project 18-07-00252). I acknowledge the
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The application of the ICA method and window
dispersion in the study of bioequivalence of drugs
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The original drug is a drug that differs from all previously registered
drugs with a pharmacologically active substance (pharmaceutical sub-
stance) or a combination of such substances.

Generic medicinal product (generic drug) is a drug that contains
the same pharmacologically active substance (pharmaceutical substance)
in the same dose and the same dosage form as the original drug, is
equivalent to the original product in terms of quality, efficiency and
profile security and is produced without a license of the company owning
the original medicinal product. Implemented after the expiry of the
patent or other exclusive rights to manufacture and sale of the original.

Thus, the presence on the market of generic funds is due, first of all,
the expiry of the terms of patent protection for the production of original
funds. The term of patent protection of a medicinal product, as a rule,
is not more than 20 years.

Generic medicines must meet the same quality, efficacy and safety
standards as the original medicines, but in addition, convincing evidence

(© Zakharova T.V., Slivkina A.V., Dranitsyna M., 2018
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must be provided that they are equivalent, previously registered similar
medicines and are clinically interchangeable with them.

To date, the main criterion for evaluating bioequivalence is the level
of drug concentration in the blood over time. To do this, experiments
are performed on healthy volunteers, after which the results are averaged
and the concentration-time curve is plotted against time. The conclusion
about bioequivalence of drugs is made on the basis of the results obtained
by comparing the area under the resulting curves.

However, this method has a huge disadvantage: it is impossible to
trace and take into account the main stages of the kinetics of the prepa-
ration, and even with a sufficiently large coincidence of areas under the
curves, it can not be concluded that the original drug and generic behave
in the human body in the same way [3].

In this paper, the method of estimating bioequivalence, whose main
goal is to break the drug concentration curve in the body into compo-
nents, is considered, implying that this curve is a signal that demon-
strates the behavior of the drug. These components are directly related
to the main stages of the drug. Denoting the boundaries of these stages,
we can, with a minimum of error, compare drugs by the duration and
nature of these stages. To isolate the components, methods such as the
method of independent components, the window dispersion method[1],
and the study of the variance gamma process will be used.

The window dispersion is defined by the formula [2]:

N
1
[/‘/ = — Xj—XQ
Nt N—1Zi:1(' I

where
1
X = N E_l X;.

The window size was chosen empirically, the best results were obtained
with a window width equal to 3 points of reference. Window dispersion
removes the trend and increases the differences in the concentration val-
ues, so a sharp decrease in the window dispersion will correspond to a
decrease in the concentration, which is the case with absorption.

The method of independent components (OLS, Independent compo-
nent analysis, ICA) [4] is a method for dividing a multidimensional signal
into additive components. Suppose we have signal sources s1, s2, ..., Sp
and signal receivers =1, xa, ..., x,. Each receiver captures the weighted
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sum of the signals.

x1(t) = a11 $1(t) + a2 s2(t) + ... + a1n s (t),
xa(t) = ag1 $1(t) + aga s2(t) + ... + a2y Sn(t),

Tn (t) = Qn1 Sl(t) + an2 S2 (t) + ...+ ann Sn(t);

where t is a fixed instant of time.

Our task is to determine the values of the sources from the values
of the receivers s, i = 1, ..., n and weights a;5,7 =1, ..., n, j =1, ...,
n. Sources of signal are also called hidden variables, latent variables or
independent components.
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On multivariate models based on scale mixtures
1. V. Zolotukhin!

!Shirshov Institute of Oceanology, Russian Academy of Sciences,
Russia, Igor.Zolotukhin@gmail.com

Let a multivariate random variable X = (X, ..., X,;,) have indepen-
dent components X;. Further assume that every component X; has the
d-dimensional strictly stable, or geometrically strictly stable distribution
with the stability index «; (1 < a; < 2) and the characteristic function

¢;(0;) = B (exp(i 07 X;)), 0, = (0", ...,0\7) e RY.
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Thereby X is both multivariate and multidimensional random vari-
able.
Consider the vector

Y = (ylv 7y’n) = (Bll/alev 7ﬁi/aan)v

which is a scale mixture of the above random variable X and the vector
B = i/al, vy ,1/0“"), or, in other words, 8* is the subordinator of X.

The positive random vector 8 mentioned above is given by its Laplace
transform

n

D(s1,..y8,) =F (exp(— Zsjﬁj)).

J=1

Theorem.
The characteristic function of the random variable Y is

Yy (01, ..., 0n) = B(—log ¢1(01), ..., —log ¢n (0n)).

As examples of using the explicit expression of the characteristic func-
tion the following subordinators were considered:

— Marshall-Olkin multivariate exponential distribution.

— Multivariate gamma distribution.

In the first case, the distribution is a discrete mixture of the gen-
eralized multivariate Linnik distribution [1] and its mixtures with the
distributions of its own projections onto all the coordinate hyperplanes.

The research was performed in the framework of the state assignment
of FASO Russia (theme No. 0149-2018-0014).
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